摘要:
A method for sorting carbon nanotubes (CNTs) is disclosed. In one embodiment, a method for sorting CNTs of the present disclosure comprises providing to a surface of a substrate, the surface modified with a trans isomer of photo-isomerization-reactive diazo compound, a dispersion containing a mixture of conducting CNTs and semiconducting CNTs; removing CNTs which are not associated with the modified surface from the surface; and irradiating the modified surface to detach the CNTs associated with the modified surface.
摘要:
The separation of single-walled carbon nanotubes (SWCNTs), by electronic type, using centrifugation of compositions of SWCNTs and surface active block copolymers in self-forming density gradient media.
摘要:
The present disclosure provides systems and methods for production of nanostructures using a plasma generator. In an embodiment, a system for use with a reactor for synthesis of nanostructures may include a chamber defining a pathway for directing a fluid mixture for the synthesis of nanostructures through the chamber. The system may further include one or more heating zones disposed along the chamber to provide a temperature gradient in the chamber to form catalyst particles upon which nanostructures can be generated from the components of the fluid mixture. The system may also include a plasma generator for generating a plasma flame in a conduit through which the fluid mixture may be passed to decompose a carbon source in the fluid mixture into its constituent atoms before proceeding into the reactor for formation of nanostructures.
摘要:
A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.
摘要:
A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.
摘要:
According to some embodiments, a method for separating a first fraction of a single wall carbon nanotubes and a second fraction of single wall carbon nanotubes includes, but is not limited to: flowing a solution comprising the nanotubes into a dielectrophoresis chamber; applying a DC voltage, in combination with an AC voltage, to the dielectrophoresis chamber; and collecting a first eluent from the dielectrophoresis chamber, wherein the first eluent comprises the first fraction and is depleted of the second fraction, wherein the first and second fractions differ by at least one of conductivity, diameter, length, and combinations thereof.
摘要:
A process for metallizing nanomaterial including subjecting nanomaterial in a metallizing solution to microwave radiation; nanomaterial made by such a process; and density gradient separation of such material. This abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, 37 C.F.R. 1.72(b).
摘要:
The present teachings provide methods for providing populations of single-walled carbon nanotubes that are substantially monodisperse in terms of diameter, electronic type, and/or chirality. Also provided are single-walled carbon nanotube populations provided thereby and articles of manufacture including such populations.