摘要:
The invention relates to producing magnetic fluids and to novel material synthesis. The inventive method for producing nanoparticles for magnetic fluids by electron-beam evaporation and condensation in vacuum consists in evaporating an initial solid material and in fixing nanoparticles of this material on a cooled substrate by means of a solidifiable carrier during vapour condensation, wherein a solid inorganic magnetic material, which is selected from a group containing metals, alloys or oxides thereof, is used as an initial material and a solid liquid-soluble material is used as a carrier material for fixing nanoparticles of the magnetic material. The method further consists in simultaneous evaporating the initial material and carrier composition, in which the carrier concentration ranges from 99 to 70%, by electron-beam heating. The vapour is deposited on the substrate, the temperature of which is set and maintained at a specified value, which is lower than the melting point of the carrier material, and the condensate of magnetic material nanoparticles, which have specified size and are fixed in the solid carrier, is produced. The particle size is adjusted by setting the specified temperature of the substrate during vapour deposition. A solid inorganic material, which is selected from a group containing salts of alkali and alkali-earth metals and mixtures thereof is used in the form of a carrier material used for fixing nanoparticles. The nanoparticles are extracted from the above-mentioned condensate by diluting it in at least one type of liquid, and by stabilizing by a surface-active agent. A method for producing a magnetic fluid, which contains magnetic material nanoparticles of the specified size, is also described, in which it is produced by dissolution in at least one fluid of the condensate of magnetic material nanoparticles of the specified size fixed in the solid carrier, which nanoparticles are produced by simultaneous electron beam evaporation with subsequent deposition on the substrate, the temperature of which is set and maintained at a certain level below the temperature of the carrier material melting, of a composition of solid inorganic magnetic material selected from a group, which includes metals, alloys and their oxides, and of a solid carrier soluble in the fluid, which fixes the nanoparticles, and which is selected from a group of inorganic materials, including the salts of alkali, alkaline-earth metals and their mixtures, and stabilization of the nanoparticles in the above fluid by a surface-active agent.
摘要:
A plasma arc reactor and process for producing a powder from a solid feed material, for example aluminium, is provided. The reactor comprises: (a) a first electrode (5), (b) a second electrode (10) which is adapted to be spaced apart from the first electrode by a distance sufficient to achieve a plasma arc therebetween, (c) means for introducing a plasma gas into the space between the first and second electrodes, (d) means for generating a plasma arc in the space between the first and second electrodes, wherein the first electrode has a channel (7) running therethrough, an outlet of the channel exiting into the space between the first and second electrodes, and wherein means are provided for feeding solid material (20) through the channel to exit therefrom via the outlet into the space between the first and second electrodes.
摘要:
A set of nanoparticles is disclosed. Each nanoparticle of the set of nanoparticles is comprised of a set of Group IV atoms arranged in a substantially spherical configuration. Each nanoparticle of the set of nanoparticles further having a sphericity of between about 1.0 and about 2.0; a diameter of between about 4 nm and about 100 nm; and a sintering temperature less than a melting temperature of the set of Group IV atoms.
摘要:
Isolated conductive nanoparticles on a dielectric layer and methods of fabricating such isolated conductive nanoparticles provide charge traps in electronic structures for use in a wide range of electronic devices and systems. In an embodiment, conductive nanoparticles are deposited on a dielectric layer by a plasma-assisted deposition process such that each conductive nanoparticle is isolated from the other conductive nanoparticles to configure the conductive nanoparticles as charge traps.
摘要:
A system operating in an environment having an ambient pressure, the system comprising: a reactor configured to combine a plasma stream, powder particles and conditioning fluid to alter the powder particles and form a mixture stream; a supply chamber coupled to the reactor; a suction generator configured to generate a suction force at the outlet of the reactor; a fluid supply module configured to supply the conditioning fluid at an original pressure; and a pressure regulation module configured to: receive the conditioning fluid from the fluid supply module, reduce the pressure of the conditioning fluid from the original pressure to a selected pressure relative to the ambient pressure regardless of any changes in the suction force at the outlet of the reactor, and supply the conditioning fluid at the selected pressure to the supply chamber.
摘要:
A heat exchanger comprising: a gas transport conduit providing a channel through which a fluid mixture can flow; an outer conduit disposed around the gas transport conduit, the outer conduit having a first cap covering a first end and a second cap covering a second end, the gas transport conduit passing through the outer conduit; and a conductive tube passing through the outer conduit, providing a channel through which a circulating fluid can flow through the outer conduit, wherein a static fluid chamber is formed between the conductive tube and the gas transport conduit, the static fluid chamber configured to house a static fluid, wherein the gas transport conduit is configured to conduct heat from the fluid mixture in the gas transport conduit to the static fluid and the conductive tube is configured to conduct heat from the static fluid to the circulating fluid.
摘要:
A method to preparing suspensions of metal or metal alloy nanoparticles in an ionic liquid involves the physical vapor deposition of a metal or a mixture of metals onto an ionic liquid. The method can be modified by the introduction of a reagent during or after formation of the suspension to yield nanoparticles of a metal salt. The nanoparticles can be isolated from the suspension by the thermal decomposition of the ionic liquid under conditions where the decomposition products are gaseous.
摘要:
Apparatus for producing silver nano-particle material. The apparatus includes a furnace containing a crucible for vaporizing a precursor material, as well as, a conduit disposed in perpendicular to the crucible. An inlet end of the conduit is open to the mixing region created between the conduit and the crucible. A process gas supply is also operatively associated with the mixing region.
摘要:
A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.
摘要:
Nanoparticles of intermetallic alloys such as FeAl, Fe3Al, NiAl, TiAl and FeCoV exhibit a wide variety of interesting structural, magnetic, catalytic, resistive and electronic, and bar coding applications. The nanosized powders can be used to make structural parts having enhanced mechanical properties, magnetic parts having enhanced magnetic saturation, catalyst materials having enhanced catalytic activity, thick film circuit elements having enhanced resolution, and screen printed images such as magnetic bar codes having enhanced magnetic properties. In contrast to bulk FeAl materials which are nonmagnetic at room temperature, the FeAl nanoparticles exhibit magnetic properties at room temperature.