摘要:
A method of making a current collector includes following steps. A carbon nanotube layer is provided, and the carbon nanotube layer includes a first surface and a second surface opposite to each other. A carbon nanotube composite layer is formed via electroplating a first metal layer on the first surface and electroplating a second metal layer on the second surface. A first carbon nanotube layer and a second carbon nanotube layer is formed by separating the carbon nanotube composite layer, wherein the first carbon nanotube layer is attached on the first metal layer, and the second carbon nanotube layer is attached on the second metal layer.
摘要:
A method for transferring a carbon nanotube array is disclosed. The carbon nanotube array has an ability to have a carbon nanotube structure drawn therefrom. The carbon nanotube array is transferred from a growing substrate to a substitute substrate, meanwhile the carbon nanotube array is still configured for drawing the carbon nanotube structure from the substitute substrate. A coating layer is formed on a top end of a carbon nanotube in the carbon nanotube array. The top end is away from the growing substrate. The substitute substrate is placed on the carbon nanotube array and contacted with the coating layer. Thereby the substitute substrate is combined with the carbon nanotube array by the coating layer. The substitute substrate is separated from the growing substrate. Thereby the carbon nanotube array is separated from the growing substrate. A method for making a carbon nanotube structure is also disclosed.
摘要:
A method for transferring a carbon nanotube array is provided. A substitute substrate, a growing substrate, and a carbon nanotube array grown on the growing substrate are provided. The carbon nanotube array has a bottom surface adjacent to the growing substrate and a top surface away from the growing substrate. The substitute substrate is placed on the top surface of the carbon nanotube array and liquid medium is sandwiched between the substitute substrate and the carbon nanotube array. The liquid medium is solidified between the substitute substrate and the carbon nanotube array. The substitute substrate is separated from the growing substrate to separate the bottom surface of the carbon nanotube array from the growing substrate. The solid medium is removed between the substitute substrate and the carbon nanotube array. A method for forming a carbon nanotube structure is also provided.
摘要:
A reactor includes a reactor chamber and a substrate. The reactor chamber having an inlet and an outlet. The hollow structure is received in the reactor chamber, wherein the hollow structure includes a sidewall, a bottom, and a opening opposite to the bottom, the sidewall defines a number of apertures, gases in the reactor chamber flow penetrate the hollow structure through the number of apertures.
摘要:
A method for making a transparent conductive element includes providing a carbon nanotube film. The carbon nanotube film includes a number of carbon nanotube wires in parallel with and spaced from each other and a number of carbon nanotubes in contact with adjacent two of the carbon nanotube wires. The carbon nanotube film is placed on a surface of a softened polymer substrate. The polymer substrate and the carbon nanotube film are stretched. The softened polymer substrate is solidified to maintain the stretched state of the carbon nanotube film.
摘要:
An earphone includes a loudspeaker, a signal process, an audio signal input port, and a driving port. The loudspeaker includes a thermoacoustic device disposed in a housing. The signal processor is electrically connected to the loudspeaker to provide signal to the loudspeaker. The audio input port is electrically connected to the signal processor to provide audio signal. The driving port is electrically connected to the signal processor to provide driving signal. The thermoacoustic device includes a substrate, and the substrate defines a number of grooves, a sound wave generator is suspended on the grooves.
摘要:
A method for making an epitaxial structure is provided. The method includes the following steps. A substrate having an epitaxial growth surface is provided. A buffer layer is formed on the epitaxial growth surface. A carbon nanotube layer is placed on the buffer layer. An epitaxial layer is epitaxially grown on the buffer layer. The substrate and the carbon nanotube layer are removed.
摘要:
A light emitting diode includes a second electrode, a first semiconductor layer, an active layer, a second semiconductor layer, a reflector, and a first electrode. The second electrode, the first semiconductor layer, the active layer, the second semiconductor layer, and the reflector are stacked on the first electrode in that order. The first semiconductor layer defines a number of grooves on a surface contacting the second electrode. The grooves form a patterned surface used as the light extraction surface.
摘要:
A method for manufacturing a carbon nanotube needle is provided. A carbon nanotube film comprising of a plurality of commonly aligned carbon nanotubes, a first electrode, and a second electrode are provided. The carbon nanotube film is fixed to the first electrode and the second electrode. An organic solvent is applied to treat the carbon nanotube film to form at least one carbon nanotube string. A voltage is applied to the carbon nanotube string until the carbon nanotube string snaps
摘要:
A method for making a carbon nanotube composite hollow structure is provided. The method includes: passing a linear structure through a hollow rotating shaft and fixing the linear structure on the collecting unit; drawing a carbon nanotube structure from a carbon nanotube array loaded on the face plate, and adhering one end of the carbon nanotube structure to part of the linear structure between the wrapping unit and the collecting unit; forming a first carbon nanotube composite wire collected by the collecting unit by rotating the face plate and pulling the linear structure along a fixed direction such that the carbon nanotube structure wraps around the linear structure; forming a second carbon nanotube composite structure by applying a polymer liquid to the first carbon nanotube composite structure; and forming the carbon nanotube composite hollow structure by removing the linear structure from the second carbon nanotube composite structure.