摘要:
A semiconductor device according to the invention includes: a first region on a semiconductor substrate, in which a first transistor is formed, the first transistor including first gate insulating film 4 containing a high dielectric constant material and first metal gate electrode 5 formed on first gate insulating film 4; a second region adjacent to the first region on the semiconductor substrate, in which a second transistor is formed, the second transistor including second gate insulating film 4 and second metal gate electrode 12 formed on the second gate insulating film, a layered structure of electrode materials of the second transistor being different from a layered structure of electrode materials of the first transistor; and a first and a second line, the lines being of different potentials, wherein a border between the first and the second region overlaps with at most only the first or the second line.
摘要:
A moving object detection device accurately detects moving objects. The device includes a motion vector calculation section calculating motion vectors from an input image; a motion vector removal section removing a motion vector having high randomness from the calculated motion vectors; a motion vector accumulation section temporally accumulating each motion vector not removed by the motion vector removal section, and calculating an accumulated number of occurrences and an accumulated value of each motion vector; and a moving object detection section determining, based on the calculated accumulated value and calculated accumulated number of occurrences of each motion vector, whether each motion vector corresponds to a moving object.
摘要:
A semiconductor device having a test mark comprising: a semiconductor substrate; a first TEOS layer formed on the semiconductor substrate; a second TEOS layer formed on the first TEOS layer and having a fluidity lower than that of the first TEOS layer at an elevated temperature; a recess formed in the first and second TEOS layers and exposing the surface of the semiconductor substrate, wherein the horizontal cross section of the recess is substantially rectangular in configuration; and a metal layer formed between the first and second TEOS layers and opposing to the corner of the recess.
摘要:
There is described a semiconductor device having a storage node capacitor structure suitable for rendering memory cells compact, and storage nodes are prevented from tilting. The device includes a storage node which has a vertical surface extending in the direction perpendicular to the surface of a semiconductor substrate, and a dielectric film for tilt prevention purposes which is brought into close contact with the side surface of the vertical surface and which prevents the vertical surface from tilting.
摘要:
A semiconductor device with a high reliability is provided. The semiconductor device includes a silicon substrate, titanium nitride films and an interlayer insulating film. A first opening is formed in the titanium nitride film. A second opening having a diameter different from that of the first opening is formed in the second titanium nitride film. A contact hole is formed in the interlayer insulating film. A titanium film, a titanium nitride film, a plug layer and an interconnect layer are formed so as to be electrically connected to the titanium nitride films through the first and second openings.
摘要:
There is described the manufacture of a semiconductor device having a storage node or high-yield manufacture of a compact memory IC. The present invention provides a method of manufacturing a semiconductor device including a basic dielectric layer formation step for forming a basic dielectric layer from a first dielectric material, a stopper film formation step for forming on the basic dielectric layer an etch stopper film from a second dielectric material differing from the first dielectric film, a sacrificial dielectric layer formation step for forming on the etch stopper film a sacrificial dielectric layer from the first dielectric material, a space formation step for forming a storage node formation space by removal of a predetermined area from the sacrificial dielectric layer until the etch stopper film becomes exposed, a storage node formation step for forming in the storage node formation space a storage node from a capacitive material, and a sacrificial dielectric layer removal step for removing the sacrificial dielectric layer surrounding the storage node by means of an etching operation suitable for removal of the first dielectric material.
摘要:
There is provided a semiconductor device adopting, as a layout of pads connected to an external package on an LSI, a zigzag pad layout in which the pads are arranged shifted alternately, which can avoid occurrences of short-circuiting of wires, an increase in chip size due to avoidance of short-circuiting, propagation of power supply or GND noise due to reduction in IO cell interval, and signal transmission delay difference due to displacement of pad positions.In a semiconductor device wherein plural pads on a semiconductor element which are connected to function terminals on an external package are arranged in two lines along the periphery of the semiconductor element, an arrangement order of the plural pads on the semiconductor element is made different from an arrangement order of the function terminals on the external package.
摘要:
A semiconductor device having in a deep hole formed in a first interlayer insulating film a memory cell region that comprises a plurality of capacitors having a lower electrode 229 composed of a crown structure having an outside face and inner face, a first upper electrode 231 facing the outside face of the lower electrode, and a dielectric and a second upper electrode extending from the inner face of the lower electrode to the surface of a first interlayer insulating film other than the deep hole; wherein the first upper electrode is connected to the second upper electrode by connecting a first upper electrode 227 formed on the inner wall of the deep hole to the wiring 241a via a conductor film 224 and a conductor plug 236a, and connecting a second upper electrode 231 to be a plate to a wiring 241a via a conductor plug 239a.
摘要:
A photolithography step is carried out for exposing/etching a resist film in an etching step. Thereafter a superposition inspection step employing a superposed layer superposition mark and a resist film superposition mark is carried out with a superposition inspection apparatus. In this step, an applied mask confirmation step is simultaneously carried out with the superposition inspection apparatus. Thus, it is possible to provide a method of fabricating a semiconductor device including a superposition inspection step, capable of efficiently confirming an applied mask and improving the fabrication yield for the semiconductor device.