Abstract:
An organic light emitting display panel includes a base substrate, a pixel defining layer disposed on the base substrate, a light emitting structure disposed in an opening of the pixel defining layer, and a mirror pattern disposed on an upper surface of the pixel defining layer. The pixel defining layer defines the opening and includes the upper surface that is in parallel with a surface of the base substrate and a side surface that is connected to the upper surface. The mirror pattern makes contact with the pixel defining layer, and entirely covers the upper surface of the pixel defining layer.
Abstract:
A display device includes a substrate, an encapsulation unit opposite to the substrate, a display unit disposed between the substrate and the encapsulation unit and including a pixel, a camera unit disposed on one side of the substrate and including at least one camera module, and a mirror member disposed on one side of the encapsulation unit.
Abstract:
A multi-image display device according to example embodiments includes a first display panel configured to output a first image and a second display panel located on a second extension line inclined at a first angle with respect to a first extension line and configured to output a second image. The first extension line is an imaginary line extended from the first display panel along a horizontal direction of the first display panel. The second display panel reflects the first image to display a first superposition image in which the second image is superimposed on the first image.
Abstract:
A color mirror substrate may include a transparent substrate, a plurality of wavelength conversion patterns arranged on the transparent substrate, and a plurality of mirror patterns, ones of the mirror patterns stacked on respective ones of the wavelength conversion patterns. Each wavelength conversion pattern may include a wavelength conversion particle with a quantum dot. In the color mirror display device, a mirror property having a desired color may be implemented. For example, a gold mirror or a black mirror may be implemented by using various types of quantum dots.
Abstract:
An organic light emitting diode display includes: a substrate; a gate line on the substrate; a data line crossing the gate line; a driving voltage line extending parallel with at least one of the gate line and the data line; a first thin film transistor coupled to the gate line and the data line and comprising a first semiconductor layer; a second thin film transistor coupled to the first thin film transistor and the driving voltage line and comprising a second semiconductor layer; and an organic light emitting element coupled to the second thin film transistor, wherein at least one of the gate line, the data line, and the driving voltage line comprise a plurality of layers, and the lowest layer of the plurality of layers comprises a first metal layer made of a reflective metal.
Abstract:
A method of fabricating a polysilicon layer includes forming a buffer layer on a substrate, forming a metal catalyst layer on the buffer layer, diffusing a metal catalyst into the metal catalyst layer to the buffer layer, removing the metal catalyst layer, forming an amorphous silicon layer on the buffer layer, and annealing the substrate to crystallize the amorphous silicon layer into a polysilicon layer. The thin film transistor includes a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate insulating layer disposed above the substrate and on the semiconductor layer, a gate electrode disposed on the gate insulating layer, a source electrode and a drain electrode both electrically connected to the semiconductor layer, and a metal silicide disposed between the buffer layer and the semiconductor layer.