Abstract:
An organic light emitting diode device includes a first electrode and a second electrode facing each other, a charge-generating layer interposed between the first electrode and the second electrode, a first light emitting unit that emits blue and is interposed between the first electrode and the charge-generating layer, and a second light emitting unit that emits white by combining the blue and is interposed between the second electrode and the charge-generating layer. The first light emitting unit includes a blue emission layer, a first charge transport layer disposed on one side of the blue emission layer and including an alkali metal complex compound and a first charge transport material, and a second charge transport layer disposed on one side of the first charge transport layer and including the alkali metal complex compound and a second charge transport material that has different charge mobility from the first charge transport material.
Abstract:
A liquid crystal display includes: a substrate including a plurality of pixel areas; a TFT disposed on the substrate; a pixel electrode connected with the TFT and disposed on the TFT; a common electrode positioned on the pixel electrode and separated from the pixel electrode by a microcavity; a roof layer disposed on the common electrode; an injection hole disposed in the common electrode and the roof layer along a long-axial direction of the substrate to expose a part of the microcavity; a liquid crystal layer filling the microcavity; a first polarizer having a polarization axis in a short-axial direction of the substrate on the roof layer; and a second polarizer having a polarization axis in a long-axial direction of the substrate below the substrate, in which heights of edges in the long-axial and short-axial directions of the substrate are larger than a height of the center of the substrate.
Abstract:
A thin film transistor array panel according to an exemplary embodiment includes: a substrate; a thin film transistor positioned on the substrate; a first electrode connected to the thin film transistor; and a diffractive layer positioned between the substrate and the thin film transistor. The diffractive layer is positioned within a boundary line of semiconductors of the thin film transistor.
Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.
Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.
Abstract:
A liquid crystal display includes: a substrate including a plurality of pixel areas; a TFT disposed on the substrate; a pixel electrode connected with the TFT and disposed on the TFT; a common electrode positioned on the pixel electrode and separated from the pixel electrode by a microcavity; a roof layer disposed on the common electrode; an injection hole disposed in the common electrode and the roof layer along a long-axial direction of the substrate to expose a part of the microcavity; a liquid crystal layer filling the microcavity; a first polarizer having a polarization axis in a short-axial direction of the substrate on the roof layer; and a second polarizer having a polarization axis in a long-axial direction of the substrate below the substrate, in which heights of edges in the long-axial and short-axial directions of the substrate are larger than a height of the center of the substrate.
Abstract:
In an aspect, an organic light-emitting display apparatus including: a substrate; at least one color filter formed on the substrate; an overcoat layer covering the at least one color filter; a first passivation layer formed on the overcoat layer; a light scattering layer formed on the first passivation layer; a first electrode formed on the light scattering layer; a second electrode facing the first electrode; and an organic layer located between the first and second electrodes is provided.
Abstract:
A display device includes a substrate, a cover layer, a liquid crystal layer, at least one electrode, and a sealant layer. The cover layer is disposed on the substrate and includes a tunnel-shaped cavity. The liquid crystal layer is disposed in the tunnel-shaped cavity. The at least one electrode is configured to apply an electric field to the liquid crystal layer. The sealant layer is configured to seal the tunnel-shaped cavity. The liquid crystal layer includes a plurality of domains defined by liquid crystal molecules pre-aligned in different directions.
Abstract:
A bonding apparatus configured to bond a component on a substrate is presented. The apparatus includes a stage, a push member, a support member and a compression member. The stage fixes the substrate in place and by using at least one first suction part formed in the stage. The push member is disposed above the stage and pushes the substrate fixed to the stage to support the substrate on the stage. At least one second suction part is formed in the support member to attach to a pad part of the substrate. The compression member compresses the component into the pad part fixed to the support member.
Abstract:
In an aspect, a liquid crystal display is provided. The liquid crystal display may include a substrate, a thin film transistor disposed on the substrate, a pixel electrode connected to one terminal of the thin film transistor, a roof layer disposed to face the pixel electrode, and a capping layer disposed on the roof layer, in which a microcavity having a liquid crystal injection hole is formed between the pixel electrode and the roof layer, the microcavity forms a liquid crystal layer including a liquid crystal molecule, and the capping layer covers the liquid crystal injection hole and includes a water-soluble polymer material.