Abstract:
An organic light emitting display device includes a first electrode, a second electrode facing the first electrode, an organic light emitting layer disposed between the first and second electrodes, a first auxiliary structure and a second auxiliary structure both of which are disposed between the first and second electrodes. The first electrode is disposed on a substrate having a first sub-pixel region, a second sub-pixel region and a third sub-pixel region. The organic light emitting layer includes a first organic light emitting layer, a second organic light emitting layer and a third organic light emitting layer. The first auxiliary structure includes a first doping pattern, a first resonance auxiliary pattern, a second doping pattern and a second resonance auxiliary pattern. The second auxiliary structure includes a third doping pattern, a third resonance auxiliary pattern, a fourth doping pattern and a fourth resonance auxiliary pattern.
Abstract:
An organic light emitting diode includes a first electrode layer, a first common layer disposed on the first electrode layer, an organic light emitting layer disposed on the first common layer, a second common layer disposed on the organic light emitting layer, and a second electrode layer disposed on the second common layer. The organic light emitting layer and the first common layer have the same directional property. Since an injection/transportation of charge at an interface of the first common layer and the organic light emitting layer becomes smooth, charges are not accumulated at the interface. Thus, life of the organic light emitting diode is extended.
Abstract:
A method of forming a film on a substrate includes depositing first and second evaporating source materials respective from first and second evaporating sources onto the substrate while moving the evaporating sources together with respect to the substrate, the first and second evaporating source materials being different from each other and positioned to provide a non-overlapping deposition region of the first evaporating source material, an overlapping deposition region of the first and second evaporating source materials and a non-overlapping deposition region of the second source material such that when the evaporating sources are moved, a film is formed to include a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.
Abstract:
An organic light emitting diode display includes a p-doped layer that can obtain high efficiency at low-voltage driving and low current and prevent leakage current by differentially forming the p-doped layer for each pixel.
Abstract:
An organic light emitting diode display includes a p-doped layer that can obtain high efficiency at low-voltage driving and low current and prevent leakage current by differentially forming the p-doped layer for each pixel.
Abstract:
An organic light-emitting display apparatus includes a display substrate, a display panel on the display substrate and including a pixel region including an organic light-emitting device (OLED), and a non-pixel region, and an encapsulation substrate for encapsulating the display panel, wherein the encapsulation substrate defines at least one groove therein in which a color filer is located.
Abstract:
An organic light emitting display includes a substrate; a first pixel electrode disposed on the substrate; a second pixel electrode disposed on the substrate; a hole auxiliary layer disposed on the first pixel electrode and the second pixel electrode; a first organic emission layer disposed on the hole auxiliary layer in correspondence with the first pixel electrode and the second pixel electrode; a blue organic emission layer disposed on the hole auxiliary layer in correspondence with the first pixel electrode and the second pixel electrode, the blue organic emission layer being further disposed on the first organic emission layer; a non-doping blue organic emission layer disposed on the blue organic emission layer; an electron auxiliary layer disposed on the non-doping blue organic emission layer; and a common electrode disposed on the electron auxiliary layer.
Abstract:
An organic light-emitting display including a conductive-organic small molecular filling material and methods of manufacturing the same are disclosed. The organic light-emitting display includes a substrate, a display unit disposed on the substrate, a sealing substrate disposed above the display unit, a sealing member that attaches the substrate to the sealing substrate and disposed outside the display unit; and a filling material filling a space between the substrate and the sealing substrate inwards from the sealing member, wherein the filling material is a conductive-organic small molecule.
Abstract:
An organic light emitting diode display includes a p-doped layer that can obtain high efficiency at low-voltage driving and low current and prevent leakage current by differentially forming the p-doped layer for each pixel.
Abstract:
An organic light-emitting display including a conductive-organic small molecular filling material and methods of manufacturing the same are disclosed. The organic light-emitting display includes a substrate, a display unit disposed on the substrate, a sealing substrate disposed above the display unit, a sealing member that attaches the substrate to the sealing substrate and disposed outside the display unit; and a filling material filling a space between the substrate and the sealing substrate inwards from the sealing member, wherein the filling material is a conductive-organic small molecule.