Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being rollable and unrollable based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a direction from a first side of the rollable structure to a second side of the rollable structure, the first side of the rollable structure being opposite to the second side of the rollable structure, and wherein each of the unit structures includes a metal plate, the metal plate being bent by a bending limit angle in a direction in which the rollable structure is rolled, and a magnetic object on a side region of the metal plate, the magnetic object being magnetically coupled to an adjacent metal plate.
Abstract:
A glass laminate, a display element, a display apparatus, a method of manufacturing the glass laminate, and a method of manufacturing the display panel. The glass laminate includes a carrier glass substrate; an intermediate layer stacked on the carrier glass substrate and formed of a material having a columnar grain structure; and a thin glass substrate stacked on the intermediate layer.
Abstract:
Provided are a method for manufacturing a flexible display apparatus, which allows for easy separation of a flexible substrate from its supporting carrier as well as allowing easy handling of the flexible substrate during processing of the flexible substrate while it is on its supporting carrier. Also provided is a flexible display apparatus manufactured by the method. The method includes forming an adhesive layer including a metallic tin where the adhesive layer is disposed on a supportive carrier and disposing a flexible substrate on the adhesive layer such that the flexible substrate is affixed to the supporting carrier with the adhesive layer interposed therebetween. The method further includes separating the flexible substrate from the carrier by transformatively stressing (disintegration-wise stressing) the adhesive layer for example by means of temperature lowering.
Abstract:
A flexible display panel peeling apparatus for peeling a flexible display panel attached to a top surface of a substrate includes a stage fixed to the substrate and a peeling plate comprising a bottom surface that is convex toward the flexible display panel and a plurality of adsorption units defined in the bottom surface to adsorb the flexible display panel to the bottom surface. Since the flexible display panel is successively peeled through the peeling plate, the flexible display panel may be peeled from the substrate without being damaged.
Abstract:
An apparatus for temporarily bonding a substrate on a carrier includes an electrically conductive adhesion layer disposed between the carrier and the substrate, and a current supply source configured to apply a current to the electrically conductive adhesion layer.
Abstract:
A method of manufacturing a flexible display apparatus, the method includes bonding a substrate onto a porous carrier substrate; forming a light-emitting display unit on the substrate; forming an encapsulating layer on the light-emitting display unit; and removing the porous carrier substrate.
Abstract:
A sacrificial layer is formed on a support substrate and a flexible substrate is formed on the sacrificial layer. Pixels are then formed on the flexible substrate. The sacrificial layer is heated by microwave energy, and a gas is discharged from the sacrificial layer. The flexible substrate, including the pixels formed thereon, is separated from the support substrate including the sacrificial layer formed thereon using the gas.
Abstract:
Provided is a carrier for a flexible substrate which is capable of handling a flexible substrate during a flexible substrate processing process, while allowing the flexible substrate to be easily separated. Also provided is a substrate processing apparatus, including the carrier, and a method of manufacturing a flexible display apparatus. The carrier includes a substrate supporting portion having a top surface including a mounting surface, an outer circumferential surface, surrounding the mounting surface, and a first heat cutting portion. The first heat cutting portion is located outside the mounting surface so as to be exposed on the top surface and generates heat when a current flows through the first heat cutting portion.