Abstract:
A method of driving a liquid crystal display apparatus includes gamma-correcting first and second gray scale data using a first gamma value to generate first and second luminance data; generating sub luminance data based on a smaller value of the first and second luminance data; correcting the sub luminance data using a second gamma value larger than the first gamma value to generate sub correction luminance data; correcting the first luminance data using the sub or second luminance data to generate first correction luminance data; correcting the second luminance data using the sub or first luminance data to generate second correction luminance data; performing inverse gamma correction on the first, second and sub correction luminance data using the first gamma value to generate first, second and sub correction gray scale data; and providing first to third pixels with the first, second, and sub correction gray scale data.
Abstract:
A display device includes: a display panel configured with rows of pixels, each row pixels including a first color pixel, a second color pixel, and a third color pixel; and a backlight assembly configured to supply light to the display panel, in which: a data signal is alternately applied to a first color pixel disposed in an odd row on an odd frame, and to another first color pixel disposed in an even row on an even frame, a data signal is alternately applied to a second color pixel disposed in the odd row on the odd frame, and to another second color pixel disposed in the even row on the even frame, a data signal is applied to a third color pixel on both frames, and colors of light supplied to the display panel on the odd frame and the even frame are different from each other.
Abstract:
A color conversion panel includes a first color filter and a second color filter that are disposed on a substrate, a low refractive index layer disposed on the substrate, the first color filter, and the second color filter, the low refractive index layer including at least one of a first blue pigment and a first blue dye, a first color conversion layer overlapping the first color filter and including a semiconductor nanocrystal, a second color conversion layer overlapping the second color filter and including a semiconductor nanocrystal, and a transmissive layer that overlaps the low refractive index layer.
Abstract:
A color conversation panel according to an embodiment may include partitioning walls disposed on a substrate, reflective layers disposed on outer surfaces of the partitioning walls, overcoats disposed outside on outer surfaces of the reflective layers and having water repellency, a spacer overlapping a part of the partitioning walls and protruding from a part of the overcoats, the spacer and the overcoats being formed on a same layer, and color conversion layers disposed on the overcoats and disposed in areas defined by the partitioning walls.
Abstract:
A display apparatus includes a backlight unit comprising a light source emitting blue light, a green color conversion material and a red color conversion material, a first polarizer disposed on the backlight unit, a first base substrate disposed on the first polarizer, a thin film transistor disposed on the first base substrate, a second polarizer disposed on the thin film transistor, a first color conversion pattern and a second color conversion pattern disposed on the second polarizer, a first color filter disposed on the first color conversion pattern, a second color filter disposed on the second color conversion pattern, a second base substrate disposed on the first and second color filters, and a third polarizer disposed on the second base substrate and having a polarizing axis same as a polarizing axis of the second polarizer.
Abstract:
A color conversion panel according to an exemplary embodiment includes: a substrate; and a plurality of color conversion layers and a transmission layer that are disposed on the substrate, the plurality of color conversion layers including nanocrystals, wherein at least one color conversion layer of the plurality of color conversion layers includes a first color conversion layer and a second color conversion layer, the first color conversion layer is disposed between the substrate and the second color conversion layer, and the first and second color conversion layers are configured so that a wavelength of light color-converted in the first color conversion layer is shorter than a wavelength of light color-converted in the second color conversion layer.
Abstract:
A color conversion panel includes a substrate, a plurality of color conversion layers and a transmission layer on the substrate, a capping layer on the plurality of color conversion layers and the transmission layer, and a filter layer on the capping layer.
Abstract:
A display apparatus includes: a display panel including first to third sub pixels which receive a first grayscale data, a second grayscale data and a third grayscale data, respectively; a light source part which provides light to the display panel and sequentially turns on first and second light sources, which emit a first light and a second light having a color different from the first light, respectively; and a color conversion layer including a first photoluminescence part which is excited by the first light to emit light having a first primary color, a second photoluminescence part which is excited by the first light to emit light having a second primary color, and a third photoluminescence part which is excited by the first light to emit light having a third primary color, where the first to third photoluminescence parts overlap the first to third sub pixels, respectively.
Abstract:
Aspects according to one or more embodiments of the present invention are directed toward a quantum dot sheet, and a light unit and a liquid crystal display including the same, having desirable features of being capable of increasing light efficiency. According to exemplary embodiments of the present invention, it is possible to increase light efficiency by forming a quantum dot sheet including quantum dots in a pattern in which multiple layers having different refractive indexes are repeatedly stacked.
Abstract:
A display apparatus includes a display panel, a display panel driver, a light source part and a local dimming driver. The display panel includes a first subpixel having a first primary color, a second subpixel having a second primary color and a transparent subpixel. The display panel driver is configured to set grayscales of the first subpixel, the second subpixel and the transparent subpixel. The light source part includes a plurality of light emitting blocks configured to provide light to the display panel. The light emitting block includes a first light source configured to generate a light of a mixed color and a second light source configured to generate a light of a third primary color. The local dimming driver is configured to alternately turn on and off the first light source and the second light source and configured to independently drive the light emitting blocks.