Abstract:
An energy harvester including first and second sheets; and a plurality of walls, each wall being sandwiched between the first and second sheets and surrounding a cavity, wherein each cavity houses at least one curved plate adapted to change from a first shape to a second shape when its temperature reaches a first threshold and to return to the first shape when its temperature falls to a second threshold lower than said first threshold.
Abstract:
A tunnel-effect power converter including first and second electrodes having opposite surfaces, wherein the first electrode includes protrusions extending towards the second electrode.
Abstract:
An integrated circuit includes a substrate with an isolation region that bounds a zone. A transistor includes a concave semiconductor region that is supported by the isolation region in a first direction and has a concavity turned to face towards the zone. The concave semiconductor region contains drain, source and channel regions. A gate region for the transistor possesses a concave portion overlapping a portion of the concave semiconductor region. A dielectric region is located between the zone of the substrate and the concave semiconductor region.
Abstract:
A first closed enclosure defines a cavity having an inner dimension smaller than 5 mm. At least one second resiliently deformable closed enclosure is connected in fluid communication with the first enclosure. A fluid at more than 90% in the liquid state fills the first and second enclosures. A first portion of the first enclosure is in contact with a hot source of a temperature higher than the evaporation temperature of the fluid. A second portion of the first enclosure located between the first portion and the resiliently deformable closed enclosure is in contact with a cold source at a temperature lower than the condensation temperature of the fluid. An electromechanical transducer is coupled to a deformable membrane of the resiliently deformable closed enclosure.
Abstract:
A power conversion device includes an enclosure containing one or more drops of a liquid. A capacitive electret transducer is coupled to the enclosure. In response to applied heat at a heating surface, the liquid vaporizes and then condenses on a flexible membrane of the capacitive electret transducer. The flexible membrane is displaced in response to the vaporization-condensation and the capacitive electret transducer generates an output current.
Abstract:
A device for converting thermal energy into electric energy intended to be used in combination with a hot source including: a capacitor of variable capacitance, including two electrodes separated by an electrically-insulating material, one of these electrodes being deformable and being associated with an element forming a bimetallic strip, said bimetallic strip including at least two layers of materials having different thermal expansion coefficients, said bimetallic strip being free to deform when it is submitted to the heat of said hot source; a second capacitor having a first electrode connected to a first electrode of said capacitor of variable capacitance; a harvesting circuit electrically connected between the second electrode of the capacitor of variable capacitance and the second electrode of the second capacitor, said harvesting circuit being capable of conducting the current flowing between said second electrodes.
Abstract:
A method for manufacturing a suspended membrane in a single-crystal semiconductor substrate, including the steps of: forming in the substrate an insulating ring delimiting an active area, removing material from the active area, successively forming in the active area a first and a second layers, the second layer being a single-crystal semiconductor layer, etching a portion of the internal periphery of said ring down to a depth greater than the thickness of the second layer, removing the first layer so that the second layer formed a suspended membrane anchored in the insulating ring.
Abstract:
A method of manufacturing bistable strips having different curvatures, each strip including a plurality of portion of layers of materials, wherein at least one specific layer portion is deposited by a plasma spraying method in conditions different for each of the strips.
Abstract:
A power conversion device includes an enclosure containing one or more drops of a liquid. A capacitive electret transducer is coupled to the enclosure. In response to applied heat at a heating surface, the liquid vaporizes and then condenses on a flexible membrane of the capacitive electret transducer. The flexible membrane is displaced in response to the vaporization-condensation and the capacitive electret transducer generates an output current.
Abstract:
A thermo-electric generator includes a semiconductor membrane with a phononic structure containing at least one P-N junction. The membrane is suspended between a first support designed to be coupled to a cold thermal source and a second support designed to be coupled to a hot thermal source. The structure for suspending the membrane has an architecture allowing the heat flux to be redistributed within the plane of the membrane.