Abstract:
A control unit of a communication device provides multicast precoding information from at least first beamforming information descriptive for a first transmission channel and second beamforming information descriptive for a second transmission channel. A precoder unit beamforms at least one signal using the multicast precoding information to obtain at least two precoded signals. A transmitter circuit which is electrically coupled to the precoder unit multicasts transmission signals through the at least first and a second transmission channels, wherein the transmission signals are derived from the precoded signals.
Abstract:
A communications system includes a receiver unit connected with a transmission channel. The receiver unit determines a signal power of a first communications signal received over the transmission channel. A transmitter unit is connected with the transmission channel and transmits a second communications signal, wherein a gain of the communications signal being output by the transmitter unit is controllable. A control unit controls the gain of the transmitter unit in response to the determined signal power. At the receiver unit, detection of broadcast signal ingress during data communication is improved and methods for avoiding disturbances between coexisting communications systems may become more reliable. Different distances between successive training symbols suitable for channel estimation may be provided to enhance the noise measurement.
Abstract:
A transmitter for transmitting data signals to at least one communications device over a wired network on a plurality of carriers is provided, wherein the carriers are located in frequencies being allocated by one or more radio services, wherein each of the radio services is allocated to one or a plurality of frequency bands, the transmitter comprising a symbol generator configured to generate symbols based on the data signals; a processor configured to generate copies of the symbols and to determine an allocation of the copies onto the plurality of carriers, wherein a first copy and a second copy of each symbol are allocated to carriers located in frequency bands that are allocated to different radio services; and a modulator configured to modulate the copies of the symbols on the carriers in accordance with the determined allocation.
Abstract:
A headphone cable (150) is connected to a headphone set (190) with one, two or more loudspeakers (191, 192). The headphone cable (150) includes at least a first signal wire (151) and at least one reference line (152, 154). An electronic filter unit (110) performs a filtering, e.g. a common mode filtering, which is effective on at least one of the signal wires and reference lines (151, 153). A differential audio signal between a signal wire and a reference line (152, 154) is passed. Common mode signals except signals within a VHF radio band may be attenuated. The electronic filter unit (110) may be arranged in a connector case (129) of a headphone connector (120) provided at a connector end of the headphone cable (150) or in a pluggable filter assembly (130) provided between the mobile electronic device (200) and the headphone cable (150).
Abstract:
A transmitter for transmitting data signals to at least one communications device over a wired network on a plurality of carriers is provided, wherein the carriers are located in frequencies being allocated by one or more radio services, wherein each of the radio services is allocated to one or a plurality of frequency bands, the transmitter comprising a symbol generator configured to generate symbols based on the data signals; a processor configured to generate copies of the symbols and to determine an allocation of the copies onto the plurality of carriers, wherein a first copy and a second copy of each symbol are allocated to carriers located in frequency bands that are allocated to different radio services; and a modulator configured to modulate the copies of the symbols on the carriers in accordance with the determined allocation.
Abstract:
A method for transmitting a signal from a transmitter over a channel to a receiver on a Power Line Network, wherein said signal is OFDM-modulated on a set of sub-carriers, is proposed, wherein an OFDM tonemap and an eigenbeamforming encoding matrix are determined based on a channel estimation for each sub-carrier, a tonemap feedback signal and an eigenbeamforming feedback signal are generated, which are descriptive of said OFDM tonemap and said eigenbeamforming encoding matrix, respectively, and transmitted to the transmitter. A corresponding receiver, a transmitter, a power line communication and a power line communication system are described as well.
Abstract:
An electronic device comprising circuitry configured to obtain an audio signal of a first passenger of a vehicle and to control a loudspeaker array to generate at least one virtual sound source that reproduces the audio signal obtained from the first passenger, the virtual sound source being provided for a second passenger.
Abstract:
A device for determining a common-mode signal in a power line communication network. The device includes a first line, a second line, and a third line that are connected to a first terminal, to a second terminal, and to a third terminal, respectively. The first, the second, and the third terminal are configured to be connected to a phase line, a neutral line, and a protective ground line of the power line communication network, respectively. The device further includes a common-mode choke configured to couple out the common signal from the first, second, and third line, and the common-mode choke is connected to a termination impedance which is higher than an impedance of the power line communication network.
Abstract:
A device for bit-demultiplexing in a multicarrier MIMO communication system (e.g. precoded spatial multiplexing MIMO communication systems using adaptive OFDM), including a multicarrier MIMO transmitter and a multicarrier MIMO receiver. The multicarrier MIMO transmitter includes a demultiplexer and symbol mapper unit receiving an input bit stream and generating a plurality of symbol streams, each symbol stream being associated with a different transmission channel and including a plurality of data symbols, each data symbol being attributed to a different carrier; one or more multicarrier modulators generating at least two multicarrier modulated signals based on the symbol streams; and at least two transmit ports respectively transmitting the at least two multicarrier modulated signals, wherein a data throughput rate of each transmission channel is separately variable.
Abstract:
A device for power line communication is provided, including a transmitter adapted to transmit signals on at least two of a plurality of power line transmission paths of a power line network; a sensor adapted to determine one or a plurality of reflection parameters of one of the plurality of power line transmission paths; and a transmission impedance matching unit adapted to match the output impedance of at least two output ports of the device which each couple to one of the plurality of transmission paths to the impedance of the at least two of the power line transmission paths based on the one or the plurality of reflection parameters. Further, a device including a corresponding reception impedance matching unit is provided and corresponding methods for transmitting and receiving signals.