Abstract:
A method of manufacturing a mask frame assembly, the method including: forming a first through hole in a vicinity of a first deposition region of a first mask; forming a second through hole in a vicinity of a second deposition region of a second mask; forming a third through hole in a first portion of a supporting stick; forming a fourth through hole in a second portion of the supporting stick; aligning the first through hole with the third through hole; aligning the second through hole with the fourth through hole; inserting a fixing member in the aligned first and third through holes; and inserting the fixing member in the aligned second and fourth through holes, wherein the support stick couples the first mask and the second mask together via the fixing member.
Abstract:
An inspection apparatus is disclosed. The inspection apparatus includes a laser, an optical sensor, and a controller. In operation, the laser outputs at least one laser beam, the optical sensor measures an intensity of the at least one laser beam passing through a lower region adjacent to the inkjet head, and the controller controls an ink ejection from the inkjet head based on the intensity of the at least one laser beam.
Abstract:
A deposition apparatus includes a chamber, a stage, a mask, a chuck, a deposition source, a laser generator, and an optical assembly. The stage is supported in the chamber. The mask is disposed on the stage. The mask includes a deposition pattern. The chuck is configured to support a substrate in the chamber. The chuck is configured to position the substrate to overlap the deposition pattern. The deposition source is disposed in the chamber. The deposition source is configured to provide a deposition material toward the substrate. The laser generator is configured to generate a laser beam. The optical assembly is configured to guide the laser beam between the mask and the substrate.
Abstract:
A clamping apparatus includes a clamping frame, a first guide, a clamp, a linear driver, and a pressure sensor. The first guide is disposed on the clamping frame. The clamp is slideably engaged with the first guide, the clamp being configured to linearly move along the first guide to adjust a distance between the clamp and the clamping frame. The linear driver is connected to the clamp, the linear driver being configured to cause, at least in part, linear motion of the clamp. The pressure sensor is configured to sense pressure applied to an object clamped between the clamp and the clamping frame.
Abstract:
A mask frame assembly including a frame and a mask having a first surface that contacts the frame. The mask includes an active area and pattern holes formed in the active area, the pattern holes being configured to allow a deposition material to pass through the mask. The mask also includes a rib portion disposed outside the active area and configured to block the deposition material from passing through the mask and a non-magnetic reinforcing member disposed on a part of the rib portion.
Abstract:
A method of manufacturing a deposition mask is disclosed. In one aspect, the method includes depositing a first photoresist layer on a substrate, aligning a first photomask over the first photoresist layer and developing the first photoresist layer to form a plurality of first photoresist patterns having sides that gradually narrow toward the substrate. The method also includes forming a metal layer over the first photoresist patterns and a portion of the substrate exposed by the first photoresist patterns, depositing a second photoresist layer over the metal layer and aligning a second photomask over the second photoresist layer and developing the second photoresist layer to form a plurality of second photoresist patterns between the first photoresist patterns. The method further includes etching the metal layer to form a pattern hole, removing the first and second photoresist patterns and separating the substrate so as to form a deposition mask.
Abstract:
A deposition apparatus and a deposition method are disclosed. In one aspect, the deposition apparatus includes an electrostatic chuck and a tensile plate attached to and formed over the electrostatic chuck. The deposition apparatus further includes an elevation unit configured to move the tensile plate towards the substrate and a tensile unit configured to apply a tensile force to the tensile plate to expand the tensile plate.
Abstract:
A method of manufacturing a mask frame assembly, the method including: forming a first through hole in a vicinity of a first deposition region of a first mask; forming a second through hole in a vicinity of a second deposition region of a second mask; forming a third through hole in a first portion of a supporting stick; forming a fourth through hole in a second portion of the supporting stick; aligning the first through hole with the third through hole; aligning the second through hole with the fourth through hole; inserting a fixing member in the aligned first and third through holes; and inserting the fixing member in the aligned second and fourth through holes, wherein the support stick couples the first mask and the second mask together via the fixing member.
Abstract:
A deposition apparatus and a deposition method are disclosed. In one aspect, the deposition apparatus includes an electrostatic chuck and a tensile plate attached to and formed over the electrostatic chuck. The deposition apparatus further includes an elevation unit configured to move the tensile plate towards the substrate and a tensile unit configured to apply a tensile force to the tensile plate to expand the tensile plate.