Abstract:
An apparatus for transferring power wirelessly is provided. The apparatus comprises a plurality of magneto-mechanical oscillators. Each oscillator comprises a first base support element disposed on a substrate, a first beam connected to the first base support element, a holder connected to the first beam, and a magnetic element disposed on the holder and configured to generate a first time-varying magnetic field in response to movement of the magnetic element under the influence of a second time-varying magnetic field. Each of the oscillators may comprise a second base support element disposed on the substrate and a second beam connecting the holder to the second base support element.
Abstract:
This disclosure provides systems, methods and apparatus for detecting foreign objects. In one aspect an apparatus for detecting a presence of an object in a magnetic field is provided. The apparatus includes a power circuit configured to generate the magnetic field and transfer power wirelessly at a level sufficient to power or charge a load via the magnetic field. The apparatus further includes a detection circuit configured to transmit signals and detect, based on a reflection of the transmitted signals, a frequency of vibration of the object caused by the magnetic field.
Abstract:
Improved battery-charging system for a vehicle. Primary and secondary coils are located in places where the vehicle can receive power from the primary coil by pulling into a parking space, for example. The parking space may have a coil embedded in the ground, or may have an array of coils embedded in the ground. A guidance system is disclosed. Fine positioning is also disclosed. The secondary coil in the vehicle can also be raised or lowered to improve coupling.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer. In one aspect the disclosure provides an apparatus for wirelessly communicating power. The apparatus includes a first conductive structure, with a length greater than a width, configured to wirelessly receive power via a magnetic field. The first conductive structure includes two substantially co-planar loops. The first conductive structure has a first edge and a second edge each intersecting a geometric line along the length of the first conductive structure. The apparatus further includes a second conductive structure, with a length greater than width, positioned between the first conductive structure and a magnetic material and configured to wirelessly receive power via the magnetic field. The length of the second conductive structure is substantially equal to at least a distance along the geometric line between the first edge and the second edge of the first conductive structure.
Abstract:
A wireless power system includes a power source, power receiver, and components thereof. The system can also include a parasitic antenna that can improve the coupling to the power source in various modes. The antenna can have both a variable capacitor and a variable inductor, and both of those can be changed in order to change characteristics of the matching.
Abstract:
Systems, methods and apparatuses for reducing the height of bipolar transmitters and/or receivers in electric vehicle charging and/or power transfer are described herein. One implementation may include an apparatus for wireless power transfer. The apparatus comprises a ferromagnetic layer comprising at least one portion having a reduced thickness. The apparatus further comprises a first coil having at least one portion countersunk into the at least one portion of the ferromagnetic layer having the reduced thickness. The apparatus further comprises a second coil overlapping the at least one countersunk portion of the first coil. The at least one portion having the reduced thickness comprises a recess in the ferromagnetic layer. The ferromagnetic layer comprises a first plurality of ferromagnetic tiles having a first thickness and the at least one portion having the reduced thickness comprises a second plurality of ferromagnetic tiles having the reduced thickness.
Abstract:
Method and system for wireless power transmission are disclosed. In one aspect, the system includes a charging base positioned on a desktop component and configured to be positioned on a desktop. The system also includes a transmitter located in the charging base and including a transmit coil wound about a plane, the transmitter being configured to wirelessly transfer power, via a wireless field, from the transmit coil to a first receiver. The system further includes a power relay configured to be positioned on the desktop and configured to relay power received from the transmitter to at least one peripheral device different from the first receiver when the peripheral device is positioned on the desktop.
Abstract:
One aspect of the disclosure provides a power receiver configured to wirelessly transfer power from at least one power transmitter. The power receiver comprises a plurality of magnetic oscillators, each magnetic oscillator of the plurality of magnetic oscillators having a mechanical resonant frequency substantially equal to a first frequency, the plurality of magnetic oscillators configured to generate a first time-varying magnetic field in response to exposure to a second time-varying magnetic field. The power receiver further comprises at least one current circuit configured to generate a time-varying electric current in response to exposure to the first time-varying magnetic field. The first time-varying magnetic field has an operating frequency substantially equal to the first frequency.
Abstract:
A wireless power transmission system and method for transmitting power from a charging base to receivers located both on and outside the charging base. The system utilizes wireless power transmission of a transmitter with a wound transmit coil.