Abstract:
A device for decoding video data includes a memory configured to store video data and a video decoder comprising one or more processors configured to adaptively select motion vector precision for motion vectors used to encode blocks of video data.
Abstract:
In one example, a device for decoding video data includes a memory configured to store video data and a video decoder configured to determine that a motion prediction candidate for a current block of video data indicates that motion information is to be derived for sub-blocks of the current block, in response to the determination: partition the current block into the sub-blocks, for each of the sub-blocks, derive motion information using motion information for at least two neighboring blocks, and decode the sub-blocks using the respective derived motion information.
Abstract:
In an example, a method of decoding video data may include receiving a first block of video data. The first block of video data may be a sub-block of a prediction unit. The method may include receiving one or more blocks of video data that neighbor the first block of video data. The method may include determining motion information of at least one of the one or more blocks of video data that neighbor the first block of video data. The method may include decoding, using overlapped block motion compensation, the first block of video data based at least in part on the motion information of the at least one of the one or more blocks that neighbor the first block of video data.
Abstract:
A system and method for encoding and decoding video data. A predicted residual signal of a target color component is determined as a function of one or more linear parameters of a linear model and of a residual signal of a source color component. A residual signal of the target color component is determined as a function of a remaining residual signal of the target color component and of the predicted residual signal of the target color component.
Abstract:
Techniques and systems are provided for coding video data. For example, a method of coding video data includes determining one or more illumination compensation parameters for a current block and coding the current block as part of an encoded bitstream using the one or more illumination compensation parameters. In some cases, the method can include determining one or more spatially neighboring samples for the current block and deriving the one or more illumination compensation parameters for the current block based on at least one of the one or more spatially neighboring samples. The method can further include signaling, individually, for the current block, an illumination compensation status in the encoded bitstream. The method can further include signaling at least one of the one or more illumination compensation parameters for the current block in the encoded bitstream.
Abstract:
An example method of entropy coding video data includes determining a window size of a plurality of window sizes for a context of a plurality of contexts used in a context-adaptive coding process to entropy code a value for a syntax element of the video data; entropy coding, based on a probability state of the context, a bin of the value for the syntax element; updating a probability state of the context based on the window size and the coded bin. The example method also includes entropy coding a next bin with the same context based on the updated probability state of the context.
Abstract:
An example method of entropy coding video data includes obtaining a pre-defined initialization value for a context of a plurality of contexts used in a context-adaptive entropy coding process to entropy code a value for a syntax element in a slice of the video data, wherein the pre-defined initialization value is stored with N-bit precision; determining, using a look-up table and based on the pre-defined initialization value, an initial probability state of the context for the slice of the video data, wherein a number of possible probability states for the context is greater than two raised to the power of N; and entropy coding, based on the initial probability state of the context, a bin of the value for the syntax element.
Abstract:
This disclosure describes techniques for signaling and processing information indicating simplified depth coding (SDC) for depth intra-prediction and depth inter-prediction modes in a 3D video coding process, such as a process defined by the 3D-HEVC extension to HEVC. In some examples, the disclosure describes techniques for unifying the signaling of SDC for depth intra-prediction and depth inter-prediction modes in 3D video coding. The signaling of SDC can be unified so that a video encoder or video decoder uses the same syntax element for signaling SDC for both the depth intra-prediction mode and the depth inter-prediction mode. Also, in some examples, a video coder may signal and/or process a residual value generated in the SDC mode using the same syntax structure, or same type of syntax structure, for both the depth intra-prediction mode and depth inter-prediction mode.
Abstract:
In an example, a method of decoding video data includes selecting a motion information derivation mode from a plurality of motion information derivation modes for determining motion information for a current block, where each motion information derivation mode of the plurality comprises performing a motion search for a first set of reference data that corresponds to a second set of reference data outside of the current block, and where the motion information indicates motion of the current block relative to reference video data. The method also includes determining the motion information for the current block using the selected motion information derivation mode. The method also includes decoding the current block using the determined motion information and without decoding syntax elements representative of the motion information.
Abstract:
A video coder may perform a simplified depth coding (SDC) mode, including simplified residual coding, to code a depth block according to any of a variety of, e.g., at least three, depth intra prediction modes. For example, the video coder may perform the SDC mode for coding a depth block according to depth modeling mode (DMM) 3, DMM 4, or a region boundary chain coding mode. In such examples, the video coder may partition the depth block, and code respective DC residual values for each partition. In some examples, the video coder may perform the SDC mode for coding a depth block according to an intra prediction mode, e.g., an HEVC base specification intra prediction mode, such as a DC intra prediction mode or one of the directional intra prediction modes. In such examples, the video coder may code a single DC residual value for the depth block.