Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive a first set of power control parameters and a second set of power control parameters; transmit a first transmission based at least in part on the first set of power control parameters; and transmit a second transmission based at least in part on the second set of power control parameters, wherein the second transmission is a retransmission of the first transmission. Numerous other aspects are provided.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon, which can be received and reported by a device to a source base station along with one or more parameters. The source base station can communicate a handover message to the femto node or a related femto gateway along with the one or more parameters. The femto node or femto gateway can disambiguate the intended target femto node based in part on the one or more parameters, which can include applying one or more filters. Applying the one or more filters may include applying an UL RSSI filter to the one or more femto nodes to determine whether presence of the device causes a rise in UL RSSI measured at the one or more femto nodes.
Abstract:
Techniques are provided for utilizing selected inter-frame spacing, such as reduced inter-frame spacing (RIFS) or short inter-frame spacing (SIFS) to avoid failed data transmissions in a Wi-Fi network or the like. For example, there is provided a method, operable by a transmitter node or entity, such as, for example, an access point (AP), that may involve sending a data transmission in a data aggregation mode, the data transmission comprising aggregated MAC protocol data units (A-MPDUs). The method may involve monitoring for and detecting potential short interference bursts in the network. The method may involve re-sending the data transmission in a data bursting mode, the data transmission comprising back-to-back data packet bursts separated by a selected inter-frame spacing.
Abstract:
A system and method for operation mode adaptation is operable by a network entity that determines channel conditions between the network entity and a second network entity. The network entity determines its hardware constraints and power consumption requirements. The network entity balances data throughput with power consumption for the network entity by selecting a hardware allocation, based at least in part on the channel conditions, the hardware constraints, and the power consumption requirements. In some implementations, the network entity balances data throughput with power consumption for the network entity by selecting an operation mode, based at least in part on the channel conditions, the hardware constraints, and the power consumption requirements.
Abstract:
Systems, devices, and methods for adjusting a transmission power at a femto node are described herein. According to the systems, devices, and methods herein, a measurement of a signal transmitted from a transmitting node may be communicated to the femto node, for example from a user equipment or a neighboring femto node, for use in adjusting the power. The transmitting node may comprise the femto node, a macro node, or a neighboring femto node. In addition, statistics regarding such measurements may be communicated to the femto node for use in adjusting the power. The femto node may also adjust the power based on unsuccessful registration attempts or interference communications received at the femto node.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon over an operating frequency of the macrocell base station, and the macrocell base station, and/or one or more network components, can identify the femto node based on one or more parameters reported by the device from receiving the beacon. The beacon can be transmitted at varying powers to ensure active hand-in triggering, mitigate interference and/or can be powered on and off for such purposes. In addition, a macrocell base station can regulate compressed mode periods during which a device can measure the femto node based on receiving information regarding device proximity to the femto node, or a device can generate proximity indication messages base on measuring the beacon signals, etc.
Abstract:
Interference that occurs during wireless communication may be managed by determination of a selected transmit waveform exhibiting a preferred channel quality. A method, apparatus and medium of communication determine a transmit waveform from among a plurality of allocated waveforms of an unplanned access point to an associated access terminal. The transmit waveform exhibiting a highest channel quality with an associated access terminal over others of the plurality of allocated waveforms is determined. Signals are transmitted according to the transmit waveform from the unplanned access point to the associated access terminal.
Abstract:
Methods and apparatus are provided for configuring mobility or paging parameters of a femto node. A method includes determining capabilities of one or more neighboring access points based in part on signals received from the one or more neighboring access points. The method includes comparing the capabilities to one or more capabilities of the femto node to determine a mobility or paging parameter adjustment. The method includes adjusting one or more mobility or paging parameters based on the mobility or paging parameter adjustment.
Abstract:
Methods and apparatus are disclosed for interference mitigation of an open-access node. The method includes determining, at the open-access node, whether uplink interference from a mobile entity is above a threshold. The method includes adjusting a transmission power to trigger a hand-in of the mobile entity in response to determining the uplink interference is above the threshold. The method includes handing-in the mobile entity from a first cell in response to adjusting the transmission power. The method includes redirecting the mobile entity to a second cell different from the first cell.
Abstract:
Described herein are techniques for reducing interference to non-cellular communications on an unlicensed band by a network entity sending/receiving cellular communications on the unlicensed band. For example, the technique may involve operating in a first mode using a first radio access technology (RAT1), and collecting interference measurements for interference to or from at least one mobile device while in the first mode. The technique may also involve switching to a second mode and using a second radio access technology (RAT2), and using the interference measurements from the first mode to minimize interference caused or experienced by the network entity in the second mode.