Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may initiate a successive decoding process for an encoded code block received at the wireless device, and generate, using a successive decoder, one or more candidate paths for a first portion of the code block, where the first portion of the code block includes a first data portion and a first data check portion. The wireless device may then perform a checking function on respective first data portions for the one or more candidate paths using respective first data check portions, and determine whether to terminate the successive decoding process prior to completing decoding of the encoded code block based at least in part on determining whether the checking function for each of the one or more candidate paths for the first data portion has failed the checking function.
Abstract:
Systems, methods and apparatus select a code book based on channel conditions and performance of a demodulator or demapper in a wireless receiver. The method may include determining that the receiver in a first wireless communication apparatus is configured for iteratively processing signals received from a channel, selecting a code book for use in communicating over the channel based on conditions affecting transmission of the signals through the channel and performance information associated with a demapper in the receiver, and identifying the selected code book in one or more control channels transmitted to a second wireless communication apparatus.
Abstract:
Apparatus and methods for channel estimation include determining two streams corresponding to odd and even samples of a received signal that is sampled at a first chip rate, performing least squares successive interference cancellation on each of the two streams to obtain odd and even raw channel estimates, interlacing the odd and even raw channel estimates to obtain interlaced channel estimates, interpolating additional samples in the interlaced channel estimates to create higher chip rate channel estimates, identifying a first set of tap positions based on the higher chip rate channel estimates, applying matching pursuit to the first set of tap positions to identify a second set of tap positions, wherein the second set of tap positions includes fewer tap positions than the first set of tap positions, and determining a third set of tap positions by clustering each tap position included in the second set of tap positions.
Abstract:
Techniques are discussed herein identify transmission strategies and to communicate those identified transmission strategies in a transparent communication environment. In some examples, a user equipment (UE) may identify a new transmission strategy for a downlink channel different from a current transmission strategy for the down link channel. The UE may transmit a channel state information (CSI) message that includes an indication of the new transmission strategy identified by the UE. In some examples, a base station may identify the new transmission strategy for the downlink channel. The base station may transmit a codebook subset restriction (CSR) indicator that includes an indication of the new transmission strategy identified by the base station. In some examples, the UE may modify its feedback strategy based on the new transmission strategy.
Abstract:
This disclosure provides systems, methods, and apparatuses for sharing a maximum transmit power limit between a first radio access technology (RAT) and a second RAT. In one aspect, a wireless communication apparatus may reduce the maximum transmit power limit of a first uplink signal associated with the first RAT to obtain a first transmit power. The wireless communication apparatus may allocate a second transmit power remaining from the maximum transmit power limit to a second uplink signal associated with the second RAT. The wireless communication apparatus may reduce the maximum transmit power limit when the wireless communication apparatus is located at a cell edge, and a higher priority of the first RAT in relation to the second RAT may otherwise result in the second transmit power of the second uplink signal not satisfying a threshold.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, an AMF may receive, from a user equipment (UE), a communication associated with a request for an identifier. The AMF may transmit, to the UE, the identifier, wherein the identifier is based at least in part on a synchronization signal block (SSB) periodicity and a number of paging frames per discontinuous reception (DRX) cycle. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a transmitting device may perform a pre-distortion of a signal on a resource allocation for the signal and using discrete Fourier transform (DFT)-domain processing. For example, the transmitting device may perform a first frequency-domain (FD) to time-domain (TD) transform, which may be an example of an inverse DFT (IDFT), on a first set of FD symbols to obtain a first set of TD samples. A size of the first FD to TD transform may be based on the resource allocation for the signal. The transmitting device may perform a crest factor reduction (CFR) function on the first set of TD samples to pre-distort the signal in the TD (e.g., in the IDFT domain), which may enable the transmitting device to avoid out-of-band (OOB) emission or otherwise have greater control over where the pre-distortion contributes energy.
Abstract:
A device may selectively listen for a tracking reference signal (TRS) during connected mode discontinuous reception (CDRx) based on whether the device is to switch between repeaters of a base station (such as during travel). A device may determine whether the device is in a high speed train (HST) scenario (such as based on a difference in frequency errors generated using a synchronization signal block (SSB) and generated using a TRS, based on a trajectory of a frequency error or a frequency error difference over time, based on instantaneous frequency errors, etc.). When the device is in a HST scenario, the device listens for a TRS during CDRx, and the device generates a frequency error using the TRS. When the device is not in a HST scenario, the device prevents listening for a TRS during CDRx (with a SSB received during CDRx to be used to generate a frequency error).
Abstract:
Methods, systems, and devices for wireless communication are described that provide for generation of an encoded transport block (TB) that includes a number of systematic code blocks (CBs) and a number of parity CBs. The systematic CBs may be transmitted to a receiver, and the receiver may attempt to decode the systematic CBs. In some cases, one or more parity CBs may be transmitted with the systematic CBs, and the systematic CBs may be successfully decoded even in the event that one or more of the systematic CBs are not successfully received. In some cases, a receiver may provide feedback that requests that additional CBs be transmitted to decode the systematic CBs that were received, and it is not necessary to retransmit the missing systematic CBs. In some cases, a quantized value of a number of additional CBs needed to decode the TB may be transmitted.
Abstract:
Methods, systems, and devices for wireless communications are described that support overlapping physical downlink control channel (PDCCH) candidate thresholds. In some examples, a user equipment (UE) may determine, for each subcarrier spacing (SCS) configuration of a set of SCS configurations, a threshold number of overlapping PDCCH candidates within a time interval. The UE may receive, from a base station, signaling indicating one or more PDCCH monitoring configurations. In some examples, the UE may monitor the PDCCH for control information according to the one or more PDCCH monitoring configurations and a number of overlapping PDCCH candidates, where the number of overlapping PDCCH candidates may satisfy (e.g., be less than or equal to) the threshold number of overlapping PDCCH candidates.