Abstract:
Exemplary features pertain to establishing an Exclusive Execution Environment domain that Trusted Execution Zone components are forbidden to access. In one example, a system-on-a-chip (SoC) is equipped with a Reduced Instruction Set Computing (RISC) processor along with an application DSP (ADSP) and/or Graphics Processing Unit (GPU), where the ADSP and/or GPU is configured to provide and enforce the Exclusive Execution Environment domain. By forbidding access to Trusted Execution Zone components, security can be enhanced, especially within minimally-equipped devices that do not have the resources to implement a full Trust Execution Environment, such as low-power devices associated with the Internet of Things (IoT). Among other features, the systems and methods described herein allow application clients to build exclusive execution environments and claim exclusive access to buffer objects and hardware resource groups. Method and apparatus examples are provided.
Abstract:
Disclosed is a method for protecting virtual machine data at a peripheral subsystem connected to at least one processor configured to host a plurality of virtual machines. In the method, context information, including a virtual machine identifier (VMID), is received. The VMID is unique to one of the plurality of virtual machines. A storage bank of a plurality of storage banks is selected based on the VMID included in the received context information. Each storage bank of the plurality of storage banks uses a same bus address range. A data bus is connected to the selected storage bank.
Abstract:
Systems, methods, and computer programs are disclosed for providing secure access control to a graphics processing unit (GPU). One system includes a GPU, a plurality GPU programming interfaces, and a command processor. Each GPU programming interface is dynamically assigned to a different one of a plurality of security zones. Each GPU programming interface is configured to receive work orders issued by one or more applications associated with the corresponding security zone. The work orders comprise instructions to be executed by the GPU. The command processor is in communication with the plurality of GPU programming interfaces. The command processor is configured to control execution of the work orders received by the plurality of GPU programming interfaces using separate secure memory regions. Each secure memory region is allocated to one of the plurality of security zones.
Abstract:
Aspects include computing devices, systems, and methods for implementing a cache maintenance or status operation for a component cache of a system cache. A computing device may generate a component cache configuration table, assign at least one component cache indicator of a component cache to a master of the component cache, and map at least one control register to the component cache indicator by a centralized control entity. The computing device may store the component cache indicator such that the component cache indicator is accessible by the master of the component cache for discovering a virtualized view of the system cache and issuing a cache maintenance or status command for the component cache bypassing the centralized control entity. The computing device may receive the cache maintenance or status command by a control register associated with a cache maintenance or status command and the component cache bypassing the centralized control entity.
Abstract:
A security apparatus and method are provided for performing a security algorithm that prevents unauthorized access to contents of a physical address (PA) that have been loaded into a storage element of the computer system as a result of performing a prediction algorithm during a hardware table walk that uses a predictor to predict a PA based on a virtual address (VA). When the predictor is enabled, it might be possible for a person with knowledge of the system to configure the predictor to cause contents stored at a PA of a secure portion of the main memory to be loaded into a register in the TLB. In this way, a person who should not have access to contents stored in secure portions of the main memory could indirectly gain unauthorized access to those contents. The apparatus and method prevent such unauthorized access to the contents by masking the contents under certain conditions.
Abstract:
A wireless mobile device includes a graphic processing unit (GPU) that has a system memory management unit (MMU) for saving and restoring system MMU translation contexts. The system MMU is coupled to a memory and the GPU. The system MMU includes a set of hardware resources. The hardware resources may be context banks, with each of the context banks having a set of hardware registers. The system MMU also includes a hardware controller that is configured to restore a hardware resource associated with an access stream of content issued by an execution thread of the GPU. The associated hardware resource may be restored from the memory into a physical hardware resource when the hardware resource associated with the access stream of content is not stored within one of the hardware resources.
Abstract:
Efficient techniques using a multi-port shared non-volatile memory are described that reduce latency in memory accesses from dedicated function specific processors, such as a modem control processor. The modem processor preempts a host processor that is accessing data from a multi-port shared non-volatile memory flash device allowing the modem processor to quickly access data in the flash device. The preemption process uses a doorbell interrupt initiated by a processor that seeks access and interrupts the processor being preempted. After preemption, the host processor may resume or restart the data access. Access control by the processors utilizes a hardware semaphore atomic control mechanism. Power control of the shared non-volatile memory modules includes at least one inactivity timer to indicate when a supply voltage to the shared non-volatile memory modules can be safely reduced or turned off. Power may be restarted by any of the processors sharing the memory, allowing fast access to the data.
Abstract:
A security apparatus and method are provided for performing a security algorithm that prevents unauthorized access to contents of a physical address (PA) that have been loaded into a storage element of the computer system as a result of performing a prediction algorithm during a hardware table walk that uses a predictor to predict a PA based on a virtual address (VA). When the predictor is enabled, it might be possible for a person with knowledge of the system to configure the predictor to cause contents stored at a PA of a secure portion of the main memory to be loaded into a register in the TLB. In this way, a person who should not have access to contents stored in secure portions of the main memory could indirectly gain unauthorized access to those contents. The apparatus and method prevent such unauthorized access to the contents by masking the contents under certain conditions.
Abstract:
A computer system and a method are provided that reduce the amount of time and computing resources that are required to perform a hardware table walk (HWTW) in the event that a translation lookaside buffer (TLB) miss occurs. If a TLB miss occurs when performing a stage 2 (S2) HWTW to find the PA at which a stage 1 (S1) page table is stored, the MMU uses the IPA to predict the corresponding PA, thereby avoiding the need to perform any of the S2 table lookups. This greatly reduces the number of lookups that need to be performed when performing these types of HWTW read transactions, which greatly reduces processing overhead and performance penalties associated with performing these types of transactions.