Abstract:
In a process for producing a fuel gas from a solid fuel by a gasification of solid fuel under a pressure of about 15-100 bars by a treatment with steam and a gas which contains free oxygen, cooling the raw gas to a temperature of about 150.degree.-200.degree. C. and saturating it with water vapor, removing condensate which has formed so that the raw gas contains hydrocarbons having a boiling range from about 20.degree. to 400.degree. C. in an amount of about 10-100 g per standard m.sup.3 of dry gas and has a CO:H.sub.2 O volume ratio of about 0.8-2, and subjecting the raw gas to a shift conversion, the improvement which comprises dividing the raw gas into first and second partial streams in a ratio of about 1:10 to 1:1, feeding the first partial stream with a surplus of water vapor to a first shift conversion stage at an inlet temperature of about 280.degree.-450.degree. C., and passing through a second shift conversion stage a mixture of effluent gas from the first shift conversion stage and at least part of the second partial stream of raw gas at a temperature of about 300.degree.-500.degree. C., while maintaining a pressure of about 15-100 bars in the shift conversion stages. Advantageously water vapor is added to the raw gas entering the first shift conversion stage in at least about 70% of the stoichiometric amount required for shift conversion of all the carbon monoxide contained in the entire raw gas.
Abstract:
Gases produced by reacting fuels with oxygen containing gases and water vapor under pressure are desulfurized by scrubbing with a concentrated solution of one or more alkali salts of weak inorganic acids at a temperature near the atmospheric-pressure boiling point of the solution in a column while maintaining an exchange ratio of from 0.2 to 2.0 cubic meters of the concentrated solution per standard cubic meter hydrogen sulfide in the gas to be purified.
Abstract:
A plasma treatment apparatus for treating strip-stock material, such as tubing, wire, webs, and the like, by moving the strip-stock through a plasma treatment region of the apparatus provides improved consistency of surface treatment if the tension on the material is maintained within a predetermined range.
Abstract:
Coarse-grained fuels are gasified in a moving bed under a pressure of 5 to 150 bars with oxygen, water vapor and, if desired, carbon dioxide. The resulting product gas is at temperatures of 250.degree. to 700.degree. C. and is cooled to temperatures in the range from 120.degree. to 220.degree. C. to form an aqueous condensate, which contains distillation products and is known as gas liquor. The gas liquor obtained by the gasification in a moving bed is pressure-relieved to atmospheric or a higher pressure and the flashed-off vapor is supplied to the fluidized bed gasifier. In the fluidized bed gasifier, fine-grained solid fuels are gasified under a pressure which is lower than that in the moving bed.The flashed-off vapor supplied to the fluidized bed supplies at least one-half of the water vapor required for the gasification in the fluidized bed. The water vapor contained in the product gas formed by the gasification in the fluidized bed is cooled and the resulting condensate is treated separately from the gas liquor obtained by the gasification in a moving bed.
Abstract:
The apparatus serves to continuously charge coarse-grained and fine-grained solid fuels by means of a rotary distributor onto a fixed bed of fuel. The fixed bed is disposed within a reactor for gasifying the fuels. Gasifying agents comprising oxygen, steam and/or carbon dioxide are passed through the fixed bed from below. Residual matter left after the gasification is withdrawn under the fixed bed as solid ash or liquid slag. Fine-grained fuel having a mean particle size up to 5 mm are placed onto the fixed bed as helical layers separately form more coarsely grained fuel having a mean particle size above 5 mm. The more coarsely grained fuel is deposited directly on fine-grained fuel which has just been deposited.The gasifier comprises a rotary distributor that includes at least one passage for the fine-grained fuel and at least one passage for the more coarsely grained fuel. The inlet of the passage for fine-grained fuel is disposed near the center of the rotary distributor. The inlet of the passage for the more coarsely grained fuel is disposed near the periphery of the rotary distributor.
Abstract:
A process for producing lean gases in which solid fuels are gasified under superatmospheric pressure by a treatment with free oxygen-containing gases, water vapor, and other gasifying agents. In the process, fuel and gasifying agent are caused to flow in opposite directions, about 1.5 to 3.5 kg of water vapor are added per standard m.sup.3 of free oxygen in the gasifying agent, about 70% of the lump coal to be gasified has a particle size from above 2 mm to about 30 mm and the remaining coal has a particle size below about 2 mm. The ballast content, consisting of water and ash, amounts to at least about 15% by weight, most of the mineral constituents have a particle size of about 2 to 30 mm and the ash which becomes available in the gasification process is withdrawn from the reactor shaft at temperatures above about 250.degree. C. Raw gas is withdrawn at temperatures above about 350.degree. C, coal is reacted in a water-cooled, double-walled reactor chamber and the resulting jacket steam is used to cool the grate and as a reactant. The rate at which steam consisting of extraneous steam and jacket steam is added to the gasifying agent is so adjusted in the above-mentioned range of about 1.5 to 3.5 kg per standard m.sup.3 of oxygen, that the nitrogen content of the dry raw product gas does not exceed about 50% by volume.
Abstract:
Process for treating raw gas produced by the gasification of coal under elevated pressures and temperatures by a treatment with oxygen and steam and, if desired, additional gasifying agents such as carbon dioxide. The raw gas leaving the gas producer is cooled in a first condensing stage to a temperature which is in the range of 150.degree.-220.degree. C and 3.degree.-25.degree. C below the dew point temperature of the raw gas. The resulting condensate is withdrawn and the raw gas is conducted through at least one additional condensing stage. The condensate of the first condensing stage is treated independently of the condensate from the further stage or stages.
Abstract:
A reactor for the pressure gasification of coal by treatment with oxygen and steam and, if desired, additional gasifying agents, at elevated temperatures and pressures, includes a water-cooled jacket and a rotary grate for moving the material to be gasified and for distributing the gasifying agents introduced into the reactor. The rotary grate is made of at least two concentric parts each of which rotates independly of the other part.
Abstract:
Coal is gasified under elevated pressures and temperatures in a reactor having a rotatably mounted grate and supply conduits for oxygen-containing and oxygen-free gasifying agents. The rotary grate contains an internal chamber adjacent to the bearing for the grate and one of the supply conduits is adapted to feed an oxygen-free fluid to this internal chamber. The uppermost portion of the rotary grate contains a substantially closed internal chamber which has a supply conduit for feeding an oxygen-free fluid thereto. A mixing chamber is positioned between the uppermost chamber and the chamber adjacent the bearing for the grate and is provided with passages which lead to the charge to be gasified. The mixing chamber communicates with the uppermost chamber as well as the chamber adjacent the bearing and also has a supply conduit for feeding gasifying agents containing free oxygen thereto.The process disclosed involves maintaining those portions of the rotary grate having the least resistance to free oxygen in a steam atmosphere.
Abstract:
A reactor for the continuous gasification of coal under superatmospheric pressures and elevated temperatures with gaseous gasifying agents containing free oxygen and with oxygen-free gasifying agents such as steam and/or carbon dioxide is disclosed. The reactor includes a substantially conical rotary grate which is rotatably mounted in the lower portion of the reactor housing. The rotary grate feeds the gasifying agent and/or discharges the gasification residues. Notwithstanding the inside diameter of the reactor housing, the clearance a between the rotary grate and the housing is 100-200 millimeters, the height b of the annular rim of the rotary grate is 100-350 millimeters, and the vertical distance c from the rotary grate to the housing bottom is 100-350 millimeters.