Abstract:
The present application discloses an imaging system for detecting human-object interaction and a method for detecting human-object interaction thereof. The imaging system includes an event sensor, an image sensor, and a controller. The event sensor is configured obtain an event data set of the targeted scene according to variations of light intensity sensed by pixels of the event sensor when an event occurs in the targeted scene. The image sensor is configured capture a visual image of the targeted scene. The controller is configured to detect human according to the event data set, trigger the image sensor to capture the visual image when the human is detected, and detect the human-object interaction in the targeted scene according to the visual image and a series of event data sets obtained by the event sensor during the event.
Abstract:
A method and apparatus for embedding a digital watermark in image content that is not visible to the human eye is performed on single-sensor digital camera images (often called ‘raw’ images) from a pixel-array. The raw image is transformed to generate preprocessed image coefficients, a watermark message is encrypted using a first key; the encrypted watermark message is randomized using a second key to form a watermark; and the watermark is embedded in randomly selected preprocessed image coefficients.
Abstract:
An image sensor includes a plurality of photodiodes, a plurality of color filters, and a plurality of microlenses. The plurality of photodiodes are arranged as a photodiode array, each of the plurality of photodiodes disposed within respective portions of a semiconductor material with a first lateral area. The plurality of color filters are arranged as a color filter array optically aligned with the photodiode array. Each of the plurality of color filters having a second lateral area greater than the first lateral area. The plurality of microlenses are arranged as a microlens array optically aligned with the color filter array and the photodiode array. Each of the plurality of microlenses have a third later area greater than the first lateral area and less than the second lateral area.
Abstract:
An image sensor pixel comprises a subpixel and a polarization pixel. The subpixel includes a group of photodiodes disposed in semiconductor material, a shared microlens optically aligned over the group of photodiodes, and a subpixel color filter disposed between the group of photodiodes and the shared microlens. The polarization pixel includes a first photodiode disposed in the semiconductor material, an unshared microlens optically aligned over the first photodiode, and a polarization filter disposed between the first photodiode and the unshared microlens. The shared microlens has a first lateral area. The unshared microlens has a second lateral area less than the first lateral area of the shared microlens.
Abstract:
An image sensor pixel includes a plurality of photodiodes, a shared microlens, and a plurality of microlenses. The plurality of photodiodes are arranged as a photodiode array with each of the plurality of photodiodes disposed within a semiconductor material. The shared microlens is optically aligned with a group of neighboring photodiodes included in the plurality of photodiodes. Each of the plurality of microlenses are optically aligned with an individual one of the plurality of photodiodes other than the group of neighboring photodiodes. The plurality of microlenses laterally surrounds the shared microlens.
Abstract:
A method for processing a plurality of images of a scene recorded from different vantage points, where the plurality of images includes a color reference image captured by a Bayer type camera and at least one additional image, the method including (a) registering at least a portion of the plurality of images, and (b) generating a unitary color image from the plurality of images, wherein color information of the unitary color image is determined exclusively from the color reference image.
Abstract:
An imaging system with on-chip phase-detection includes an image sensor with symmetric multi-pixel phase-difference detectors. Each symmetric multi-pixel phase-difference detector includes (a) a plurality of pixels forming an array and each having a respective color filter thereon, each color filter having a transmission spectrum and (b) a microlens at least partially above each of the plurality of pixels and having an optical axis intersecting the array. The array, by virtue of each transmission spectrum, has reflection symmetry with respect to both (a) a first plane that includes the optical axis and (b) a second plane that is orthogonal to the first plane. The imaging system includes a phase-detection row pair, which includes a plurality of symmetric multi-pixel phase-difference detectors in a pair of adjacent pixel rows and a pair, and an analogous phase-detection column pair.
Abstract:
An image sensor for on-chip phase detection includes a pixel array for capturing an image of a scene, wherein the pixel array has a plurality of horizontal phase-detection rows, each including phase-detection pixels for detecting horizontal change in the scene, and a plurality of vertical phase-detection columns, each including phase-detection pixels for detecting vertical change in the scene, and wherein each of the horizontal phase-detection rows intersects each of the vertical phase-detection columns. A phase-detection method includes generating a pair of horizontal line profiles using one of a plurality of phase-detection rows; generating a pair of vertical line profiles using one of a plurality of phase-detection columns intersecting with the one of a plurality of phase-detection rows; and determining phase shift associated with at least one arbitrarily oriented edge in a scene, based upon the pair of horizontal line profiles and the pair of vertical line profiles.
Abstract:
A method of generating a high resolution color image includes focusing a first image onto a monochrome image sensor having a P resolution and focusing a second image onto a color image sensor having a Q resolution, where Q