摘要:
Methods and systems for removing impurities from an electrolytic salt are disclosed. After removal of impurities from the salt, the salt can be subjected to electrorefining to produce high-purity materials, for example silicon. Impurities are removed from the salt using a system that includes a first working electrode, a counter electrode, and at least one reference electrode. A second working electrode can also be utilized. The salt may be utilized in an electrorefining system, for example a system operated in a single phase or multiple phase operation to produce high-purity materials, such as solar-grade silicon.
摘要:
Principles of the present disclosure present a new concept for solar photovoltaic systems wherein the load to the photovoltaic system is digitally managed. This allows for much higher system efficiency along with a much lower system cost as compared to traditional solar photovoltaic systems in specific applications. By eliminating storage and power electronics typically present in traditional solar photovoltaic systems, exemplary systems achieve a cost reduction of over 50%, while the system efficiency is improved to over 95%.
摘要:
Electroplating of aluminum may be utilized to form electrodes for solar cells. In contrast to expensive silver electrodes, aluminum allows for reduced cell cost and addresses the problem of material scarcity. In contrast to copper electrodes which typically require barrier layers, aluminum allows for simplified cell structures and fabrication steps. In the solar cells, point contacts may be utilized in the backside electrodes for increased efficiency. Solar cells formed in accordance with the present disclosure enable large-scale and cost-effective deployment of solar photovoltaic systems.
摘要:
Methods and systems for removing impurities from an electrolytic salt are disclosed. After removal of impurities from the salt, the salt can be subjected to electrorefining to produce high-purity materials, for example silicon. Impurities are removed from the salt using a system that includes a first working electrode, a counter electrode, and at least one reference electrode. A second working electrode can also be utilized. The salt may be utilized in an electrorefining system, for example a system operated in a single phase or multiple phase operation to produce high-purity materials, such as solar-grade silicon.
摘要:
Methods and systems for electrochemically depositing doped metal oxide and metal chalcogenide films are disclosed. An example method includes dissolving a metal precursor into a solution, adding a halogen precursor to the solution, and applying a potential between a working electrode and a counter electrode of an electrochemical cell to deposit halogen doped metal oxide or metal chalcogenide onto a substrate. Another example method includes dissolving a zinc precursor into a solution, adding an yttrium precursor to the solution, and applying a potential between a working electrode and a counter electrode of an electrochemical cell to deposit yttrium doped zinc oxide onto a substrate. Other embodiments are described and claimed.
摘要:
Fabrication methods and processes are described, the methods and processes occurring at a low-temperature and involving passivation. The methods and processes easily incorporate annealing, deposition, patterning, lithography, etching, oxidation, epitaxy and chemical mechanical polishing for forming suitable devices, such as diodes and MOSFETs. Such fabrication is a suitable and more cost-effective alternative to a process of diffusion or doping, typical for forming p-n junctions. The process flow does not require temperatures above 700 degrees Centigrade. Formation of p-n junctions in discrete silicon diodes and MOSFETs are also provided, fabricated at low temperatures in the absence of diffusion or doping.
摘要:
Principles of the present disclosure present an advanced control algorithm related to improving maximum power point tracking of a renewable energy system such as a solar photovoltaic system through load management, which estimates optimum load switch points, minimizes unsuccessful switches, and maximizes renewable energy such as photovoltaic energy delivered to loads.
摘要:
A load management system for a solar photovoltaic (PV) system is disclosed. The load management system may include a PV array of solar modules, a plurality of loads configured to be powered by the PV array and switched on or off by a plurality of respective relays, a power sensor configured to measure an amount of power delivered from the PV array to the plurality of loads, and a controller coupled to the power sensor and the plurality of relays. The controller may be configured to determine a first power output of the PV array at a first time, switch a load, determine a second power output of the PV array at a second time, compare the first power output and the second power output, and based on the comparison, maintain the switched load or undo the switching of the load.
摘要:
Methods for light-induced electroplating of aluminum are disclosed herein. Exemplary methods may comprise preparing an ionic liquid comprising aluminum chloride (AlCl3) and an organic halide, placing the silicon substrate into the ionic liquid, illuminating the silicon substrate, the illumination passing through the ionic liquid, and depositing aluminum onto the silicon substrate via a light-induced electroplating process, wherein the light-induced electroplating process utilizes an applied current that does not exceed a photo-generated current generated by the illumination.
摘要:
Principles of the present disclosure present a new concept for solar photovoltaic systems wherein the load to the photovoltaic system is digitally managed. This allows for much higher system efficiency along with a much lower system cost as compared to traditional solar photovoltaic systems in specific applications. By eliminating storage and power electronics typically present in traditional solar photovoltaic systems, exemplary systems achieve a cost reduction of over 50%, while the system efficiency is improved to over 95%.