Abstract:
Concepts and schemes pertaining to location of interleaver with low-density parity-check (LDPC) code are described. A processor of an apparatus encodes data to provide a stream of encoded data. The processor also rate matches the encoded data to provide a rate-matched stream of encoded data. The processor further interleaving the rate-matched stream of encoded data. In rate matching the encoded data, the processor buffers the stream of encoded data in a circular buffer, with the circular buffer functioning as a rate matching block that rate matches the stream of encoded data. In interleaving the rate-matched stream of encoded data, the processor performs bit-level interleaving on the rate-matched stream of encoded data to provide a stream of interleaved data.
Abstract:
Various novel concepts and schemes pertaining to non-orthogonal multiple access for wireless communications are described. A group orthogonal coded access (GOCA) scheme is introduced to reduce multi-user interference (MUI) and improve performance. A repetition division multiple access (RDMA) scheme is introduced to differentiate user equipment (UEs) by different repetition patterns. A low-density spreading (LDS) scheme is introduced to reduce MUI and improve performance.
Abstract:
A processor of an apparatus establishes a wireless communication link with at least one other apparatus via a transceiver of the apparatus. The processor wirelessly communicates with the other apparatus via the wireless communication link by: selecting a first shift-coefficient table from a plurality of shift-coefficient tables; generating a QC-LDPC code using a base matrix and at least a portion of the first shift-coefficient table; selecting a codebook from a plurality of codebooks embedded in the QC-LDPC code; storing the selected codebook in a memory associated with the processor; encoding data using the selected codebook to generate a plurality of modulation symbols of the data; and controlling the transceiver to multiplex, convert, filter, amplify and radiate the modulation symbols as electromagnetic waves through one or more antennas of the apparatus to transmit the modulation symbols of the data to the other apparatus via the wireless communication link.
Abstract:
Concepts and schemes pertaining to location of interleaver with low-density parity-check (LDPC) code are described. A processor of an apparatus encodes data to provide a stream of encoded data. The processor also rate matches the encoded data to provide a rate-matched stream of encoded data. The processor further interleaving the rate-matched stream of encoded data. In rate matching the encoded data, the processor buffers the stream of encoded data in a circular buffer, with the circular buffer functioning as a rate matching block that rate matches the stream of encoded data. In interleaving the rate-matched stream of encoded data, the processor performs bit-level interleaving on the rate-matched stream of encoded data to provide a stream of interleaved data.
Abstract:
A Hybrid Automatic Repeat Request (HARQ) feedback scheme that employs a multi-state NACK feedback processing is proposed. A transport block (TB) contains a plurality of code blocks (CBs). When all CBs of the TB are successfully decoded, a one-bit TB ACK is feedback. When at least one CB of the TB is not correctly decoded, a one-bit TB NACK is feedback. In addition, a multi-bit HARQ CB NACK feedback is provided. The multi-bit HARQ CB NACK can point more precisely to the erroneous parts of the TB and trigger efficient retransmission by skipping retransmission of successfully decoded CBs. The network can disable the multi-bit CB NACK for certain UEs, e.g., to reduce overhead. The UE can disable the multi-bit CB NACK, e.g., to save power.
Abstract:
Concepts and examples pertaining to efficient coding switching and modem resource utilization in wireless communication systems are described. A processor of a modem of a user equipment (UE), configured with at least a first-capacity decoder and at least a second-capacity decoder, receives a common virtual carrier (CVC), a dedicated virtual carrier (DVC), or both. The CVC contains common information shared by multiple UEs, control information for the UE, and/or data information related to first data destined for the UE. The DVC contains control information for the UE, the first data, or a combination thereof. The first-capacity decoder decodes data of a small size up to a low data rate. The second-capacity decoder decodes data of a large size up to a high data rate. The processor determines whether to decode the first data using the first-capacity decoder or the second-capacity decoder based on the data information in the CVC.
Abstract:
Concepts and schemes pertaining to quasi-cyclic-low-density parity-check (QC-LDPC) coding are described. A processor of an apparatus may generate a QC-LDPC code having a plurality of codebooks embedded therein. The processor may select a codebook from the plurality of codebooks. The processor may also encode data using the selected codebook. Alternatively or additionally, the processor may generate the QC-LDPC code including at least one quasi-row orthogonal layer. Alternatively or additionally, the processor may generate the QC-LDPC code including a base matrix a portion of which forming a kernel matrix that corresponds to a code rate of at least a threshold value
Abstract:
A mobile communication device with a Radio Frequency (RF) unit and a processing unit is provided. The RF unit transmits and receives wireless signals to and from a service network. The processing unit configures the RF unit to communicate with the service network in a DRX operation, and uses a Physical Broadcast Channel (PBCH) for synchronizing with the service network during the DRX operation.
Abstract:
A method for performing wireless communications and an associated apparatus are provided, where the method is applied to an electronic device. The method includes the steps of: receiving at least one data stream, wherein each data stream from the at least one data stream is transmitted from a wireless channel; in a first iteration, utilizing a Maximum Likelihood (ML) estimator to perform demapping processing on at least one portion of the at least one data stream to obtain Log-Likelihood Ratios (LLRs) of the first iteration and performing Turbo decoding according to the LLRs of the first iteration to generate resultant LLRs of the first Iteration; and in at least one following iteration, utilizing a Max A Posterior (MAP) estimator to perform demapping processing on at least one portion of the at least one data stream and performing Turbo decoding, successively, in order to cancel interference due to the wireless channel.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a device. The device applies Nso sensing beam vectors to Nso received signals at Nant antennas to obtain Nso measurements, respectively, Nso and Nant each being an integer greater than or equal to 1. The device determines a beam vector based on the Nso measurements and the Nso sensing beam vectors.