Abstract:
An antenna with swappable and selective radiation direction includes a first arm, a second arm electrically connected to the first arm, a third arm is electrically connected to the first arm, a first impedance tuning circuit coupled to the second arm for connecting the second arm to a ground or a first matching component according to a control signal, and a second impedance tuning circuit coupled to the third arm for connecting the third arm to the ground or a second matching component according to the control signal. By tuning impedance of the antenna, the antenna operates in a first mode corresponding to a first radiation direction or a second mode corresponding to a second radiation direction.
Abstract:
An antenna with swappable and selective radiation direction includes a first arm, a second arm electrically connected to the first arm, a third arm is electrically connected to the first arm, a first impedance tuning circuit coupled to the second arm for connecting the second arm to a ground or a first matching component according to a control signal, and a second impedance tuning circuit coupled to the third arm for connecting the third arm to the ground or a second matching component according to the control signal. By tuning impedance of the antenna, the antenna operates in a first mode corresponding to a first radiation direction or a second mode corresponding to a second radiation direction.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a redistribution layer (RDL) structure formed on a non-active surface of a semiconductor die. An antenna structure includes a first antenna element formed in the RDL structure, a first insulating layer covering the RDL structure, a second insulating layer formed on the first insulating layer, and a second antenna element formed on and in direct contact with the second insulating layer.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a first redistribution layer (RDL) structure formed on a non-active surface of a semiconductor die. A second RDL structure is formed on and electrically coupled to an active surface of the semiconductor die. A ground layer is formed in the first RDL structure. A first molding compound layer is formed on the first RDL structure. A first antenna includes a first antenna element formed in the second RDL structure and a second antenna element formed on the first molding compound layer. Each of the first antenna element and the second antenna element has a first portion overlapping the semiconductor die as viewed from a top-view perspective.
Abstract:
An antenna device includes a substrate, a feed line and an antenna. The substrate is formed with a non-opaque material. The feed line is disposed at the substrate and has a first terminal and a second terminal. The antenna is disposed at the substrate, electrically connected to the first terminal of the feed line, and is used to access a wireless signal. The second terminal of the feed line is electrically connected to a chip disposed on the substrate.
Abstract:
A multi-band dual-polarized antenna structure is provided. The multi-band dual-polarized antenna structure includes a first antenna array, a second antenna array and a third antenna array. The first antenna array is arranged in a first row and operating at a first frequency. The second antenna array is arranged in a second row, operates at a second frequency and has a first polarized direction. The third antenna array is arranged in the second row, operates at the second frequency and has a second polarized direction different from the first polarized direction.
Abstract:
The invention provides an antenna module of improved performances; the antenna module may comprise a plurality of first antennas for signaling at a first band, and a plurality of second antennas for signaling at a second band different from the first band. Each said first antenna may comprise a main radiator which resonates at a mode-one frequency and a mode-two frequency different from the mode-one frequency; and the main radiator may be configured such that the mode-one frequency may be in the first band, and the mode-two frequency may not be in the first band and the second band.
Abstract:
The invention provides an antenna for multi-broadband and multi-polarization communication, which may include a plurality of radiators configured to jointly function as one or more dipoles, and a plurality of parasitic elements. Each radiator may be configured to contribute to resonances at two or more nonoverlapping bands, and may comprise an arm and a ground wall connecting the arm and a ground plane. The arm may comprise an arm plate and a folded arm. The ground wall may comprise a meandering portion causing a distance between the arm and the ground plane to be shorter than a length of a current conduction path along the ground wall between the arm and the ground plane. On a geometric reference surface, a projection of each parasitic element may extend between two gaps which clamp a projection of an associated one of the radiators.
Abstract:
A multi-antenna system is provided. The multi-antenna system includes a first antenna, a second antenna, a tunable circuit, and a frequency-divisional circuit. The first antenna is utilized to implement signals of a first frequency band. The second antenna is utilized to implement signals of a second frequency band. The second antenna is different from the first antenna, and frequencies of the second frequency band are greater than frequencies of the first frequency band. The tunable circuit is utilized to switch the signals of the first frequency band. The frequency-divisional circuit is utilized to suppress harmonics caused by the tunable circuit.
Abstract:
A wireless communication device is used for performing wireless communication via at least one of a plurality of antennas. The antennas include a first antenna and a second antenna. The first antenna includes at least one first controllable component. The wireless communication device has at least one communication system and a control circuit. The at least one communication system is used to perform the wireless communication via at least one of the plurality of antennas. The control circuit is used to set the at least one first controllable component according to a first setting when the first antenna and the second antenna are active, and set the at least one first controllable component according to a second setting when the first antenna is inactive and the second antenna is active, where the second setting is different from the first setting.