Abstract:
A mobile terminal includes a memory; a touch screen; a first camera having a first capturing angle; a second camera having a second capturing angle that is wider than the first capturing angle; and a controller. The controller is configured to: cause the touch screen to display a first preview image of the first camera, a second preview image of the second camera, or both the first and second preview images overlapping each other; cause the memory to store a first image taken by the first camera in response to a first capture command received while the first preview image is displayed; and cause the memory to store both the first image and a second image taken by the second camera when a wide-angle capturing condition is satisfied while at least one of the first preview image or the second preview image is displayed.
Abstract:
Disclosed is a solar cell including a semiconductor substrate, and a dopant layer disposed over one surface of the semiconductor substrate and having a crystalline structure different from that of the semiconductor substrate, the dopant layer including a dopant. The dopant layer includes a plurality of semiconductor layers stacked one above another in a thickness direction thereof, and an interface layer interposed therebetween. The interface layer is an oxide layer having a higher concentration of oxygen than that in each of the plurality of semiconductor layers.
Abstract:
An electronic device capable of performing multimodal biometric authentication, where a comparison group is first formed after performing a user authentication with low precision, and then a user authentication is performed with high precision using the formed comparison group, such that the precision of the user authentication and a speed of the user authentication can be both increased.
Abstract:
The electronic device includes: a sensor unit configured to detect biometric information, a security module to extract a genuine score from the detected biometric information and generate a biometric authentication model, and perform user authentication based on feature points acquired from the detected biometric information and the biometric authentication, and a controller to control an operation of the electronic device based on a result of the user authentication, wherein the security module determines whether or not the biometric information used for the user authentication is biometric information acquired from a genuine user when the user authentication fails, and updates the biometric authentication model based on the genuine score extracted from the acquired biometric information. The present invention may provide an electronic device performing complex biometric authentication by using TOT (Internet of Things).
Abstract:
Disclosed is an electronic device including: an input unit provided with buttons; a plurality of sensors; and a controller configured to activate at least some of the plurality of sensors based on a received activation signal, generate authentication information based on at least one of the activated sensors, calculate a final security level score based on a security level score corresponding to the at least one authentication information, and determine whether a target service or a target external device is accessible, based on the calculated final security level score.
Abstract:
A solar cell can include a silicon substrate; a tunnel layer disposed on a first surface of the silicon substrate, the tunnel layer including a dielectric material; a polycrystalline silicon layer disposed on the tunnel layer; a dielectric layer disposed on the polycrystalline silicon layer; and an electrode penetrating through the dielectric layer and directly contacting with the polycrystalline silicon layer, wherein the polycrystalline silicon layer includes a metal crystal region positioned at a region where the polycrystalline silicon layer contacts the electrode, and wherein the metal crystal region includes a plurality of metal crystals, the plurality of metal crystals including a metal material same as a metal material included in the electrode.
Abstract:
An electronic device according to an embodiment of the present disclosure may include a first biometric sensor configured to sense first biometric information; a second biometric sensor configured to sense second biometric information; a security module configured to set a multidimensional variable determination criterion including context information at the time of sensing at least one of the first biometric information and the second biometric information, and perform first user authentication by applying the multidimensional variable determination criterion to a matching score for the first biometric information or the second biometric information, and determine whether or not to perform second user authentication using the remaining biometric information based on a result of the first user authentication; and a controller configured to control an operation of the electronic device based on at least one of the first and second user authentication results carried out by the security module.
Abstract:
A solar cell module includes a plurality of solar cells comprising a first solar cell and a second solar cell adjacent to each other; a conductive ribbon, wherein each of the plurality of solar cells comprises: a substrate; an emitter layer of positioned on the substrate; a plurality of finger electrodes formed in a first direction, each finger electrode being electrically connected to the emitter layer; and at least one first collector formed in a second direction crossing the first direction, the at least one first collector being electrically connected to the plurality of finger electrodes, wherein the conductive ribbon is attached to the at least one first collector in the second direction by a conductive adhesive, and wherein the conductive ribbon is attached on a collector region where the at least one first collector is formed and a deletion where the at least one first collector is not formed.
Abstract:
A solar cell can include a substrate of a first conductive type; an emitter layer of a second conductive type opposite the first conductive type, and positioned on the substrate; a plurality of finger electrodes formed in a first direction, each finger electrode being electrically connected to the emitter layer; a plurality of first collector regions; a plurality of first electrodes positioned in a plurality of first collector regions and extending in the first direction from the plurality of finger electrodes; a plurality of second electrodes positioned in the plurality of first collector regions and formed in a perpendicular direction crossing the first direction; a plurality of third electrodes positioned in the plurality of first collector regions, connecting two neighboring first electrodes of the plurality of first electrodes and formed in the perpendicular direction; and a plurality of deletions positioned in the plurality of first collector regions. Furthermore, one of the plurality of second electrodes is positioned between a pair of the plurality of first electrodes.
Abstract:
The present disclosure a method of operating user equipment (UE) in a wireless communication system, the method comprising: identifying layer information that is applied to a neural polar code; generating, based on the identified layer information, transmission data by encoding data that is input into the neural polar code; and transmitting the transmission data to a base station, wherein, based on polar code transformation, the neural polar code generates the transmission data by performing encoding, based on the polar code transformation, from an initial layer of the data to a first layer according to the identified layer information and by performing encoding through a neural network-based autoencoder after the first layer until the transmission data is generated.