Abstract:
Provided are a catalyst system for olefin oligomerization reaction and a method for olefin oligomerization, and more particularly, a catalyst system for olefin oligomerization reaction and a method for olefin oligomerization, which enable more efficient preparation of alpha-olefin, because a catalytic active ingredient is supported on a support, thereby exhibiting high activity in olefin oligomerization reaction even by using smaller amounts of a catalyst composition and a cocatalyst.
Abstract:
The present invention relates to a process for preparing an olefin oligomer including a step of contacting an olefin monomer with a composite catalyst in the presence of a halogenated organic solvent, wherein the composite catalyst includes: a transition metal compound; a cocatalyst; and an organic ligand including a diphosphonoamine compound in which two or more diphosphonoamines are combined via a polyvalent functional group.
Abstract:
The present invention relates to a method for preparing a hybrid supported metallocene catalyst. More specifically, the present invention relates to a method for preparing a hybrid supported metallocene catalyst by using two or more different types of metallocene compounds. One type of the metallocene compounds shows a high polymerization activity even when it is supported, and thus the catalyst has an excellent activity and can be utilized in the polymerization of olefinic polymers having ultra-high molecular weight. Based on the hybrid supported metallocene catalyst obtained according to the preparation method of the present invention, an olefinic polymer having high molecular weight and the desired physical property can be prepared.
Abstract:
The present invention relates to a novel metallocene compound, a catalyst composition including the same, and a method of preparing an olefinic polymer by using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used for producing olefinic polymers, have outstanding polymerizing ability, and can produce olefinic polymers of ultra high molecular weight. In particular, when the metallocene compound according to the present invention is employed, an olefinic polymer of ultra high molecular weight can be obtained because it shows high polymerization activity even when it is supported on a carrier and maintains high activity even in the presence of hydrogen because of its low hydrogen reactivity.
Abstract:
Provided are ligand compounds selected from among N-(diphenylphosphino)-1,1-diphenyl-N-(4-phenylbutan-2-yl)phosphinamine and N4,N4-bis(diphenylphosphino)-N1,N1-diethylpentane-1,4-diamine, a catalyst system for olefin oligomerization, and a method for olefin oligomerization using the same. The catalyst system for olefin oligomerization has excellent catalytic activity, and yet, exhibits high selectivity to 1-hexene or 1-octene, thus enabling more efficient preparation of alpha-olefin.
Abstract:
The present invention relates to a ligand compound, a catalyst system for ethylene oligomerization, and a method for ethylene oligomerization using the same. The catalyst system for ethylene oligomerization according to the present invention not only has excellent catalytic activity but also shows more improved liquid olefin selectivity, and enables more effective preparation of an alpha-olefin through the oligomerization of ethylene because it is particularly possible to control the selectivity to 1-hexene or 1-octene.
Abstract:
The present invention relates to a compound represented by Chemical Formula 1, a catalyst system for olefin oligomerization comprising the same, and a method of olefin oligomerization using the same.
Abstract:
The present invention relates to a ligand compound, a catalyst system for olefin oligomerization and a method for oligomerizing an olefin using same. The catalyst system for olefin oligomerization according to the present invention exhibits high selectivity to 1-hexene or 1-octene while having excellent catalytic activity, thus enabling more efficient preparation of alpha-olefins.
Abstract:
The present invention relates to a ligand compound, catalyst system for olefin oligomerization, and a method for oligomerizing olefins using the same. The catalyst system for olefin oligomerization according to the present invention exhibit selectivity to 1-hexene or 1-octene while having excellent catalytic activity, thus enabling more efficient preparation of alpha-olefins.
Abstract:
The present disclosure relates to a ligand compound, a catalyst system for oligomerization, and a method for olefin oligomerization using the same. The catalyst system for oligomerization using the ligand compound according to the present disclosure has excellent catalytic activity, exhibits high selectivity to 1-hexene and 1-octene, and greatly reduces the production of the by-products, thereby enabling efficient preparation of alpha-olefin.