Abstract:
Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
Abstract:
Disclosed are apparatus and methods for determining optimal focus for a photolithography system. A plurality of optical signals are acquired from a particular target located in a plurality of fields on a semiconductor wafer, and the fields were formed using different process parameters, including different focus values. A feature is extracted from the optical signals related to changes in focus. A curve is fitted to the extracted feature of the optical signals as a function of focus. An extreme point in the curve is determined and reported as an optimal focus for use in the photolithography system.
Abstract:
Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
Abstract:
Disclosed are apparatus and methods for characterizing a plurality of structures of interest on a semiconductor wafer. A plurality of spectra signals are measured from a particular structure of interest at a plurality of azimuth angles from one or more sensors of a metrology system. A difference spectrum is determined based on the spectra signals obtained for the azimuth angles. A quality indication of the particular structure of interest is determined and reported based on analyzing the difference spectrum.
Abstract:
Disclosed are apparatus and methods for determining optimal focus for a photolithography system. A plurality of optical signals are acquired from a particular target located in a plurality of fields on a semiconductor wafer, and the fields were formed using different process parameters, including different focus values. A feature is extracted from the optical signals related to changes in focus. A symmetric curve is fitted to the extracted feature of the optical signals as a function of focus. An extreme point in the symmetric curve is determined and reported as an optimal focus for use in the photolithography system.
Abstract:
An optimized measurement model is determined based a model of parameter variations across a semiconductor wafer. A global, cross-wafer model characterizes a structural parameter as a function of location on the wafer. A measurement model is optimized by constraining the measurement model with the cross-wafer model of process variations. In some examples, the cross-wafer model is itself a parameterized model. However, the cross-wafer model characterizes the values of a structural parameter at any location on the wafer with far fewer parameters than a measurement model that treats the structural parameter as unknown at every location. In some examples, the cross-wafer model gives rise to constraints among unknown structural parameter values based on location on the wafer. In one example, the cross-wafer model relates the values of structural parameters associated with groups of measurement sites based on their location on the wafer.
Abstract:
Disclosed are apparatus and methods for determining process or structure parameters for semiconductor structures. A plurality of optical signals is acquired from one or more targets located in a plurality of fields on a semiconductor wafer. The fields are associated with different process parameters for fabricating the one or more targets, and the acquired optical signals contain information regarding a parameter of interest (POI) for a top structure and information regarding one or more underlayer parameters for one or more underlayers formed below such top structure. A feature extraction model is generated to extract a plurality of feature signals from such acquired optical signals so that the feature signals contain information for the POI and exclude information for the underlayer parameters. A POI value for each top structure of each field is determined based on the feature signals extracted by the feature extraction model.
Abstract:
Methods and systems for combining information present in measured images of semiconductor wafers with additional measurements of particular structures within the measured images are presented herein. In one aspect, an image-based signal response metrology (SRM) model is trained based on measured images and corresponding reference measurements of particular structures within each image. The trained, image-based SRM model is then used to calculate values of one or more parameters of interest directly from measured image data collected from other wafers. In another aspect, a measurement signal synthesis model is trained based on measured images and corresponding measurement signals generated by measurements of particular structures within each image by a non-imaging measurement technique. Images collected from other wafers are transformed into synthetic measurement signals associated with the non-imaging measurement technique and a model-based measurement is employed to estimate values of parameters of interest based on the synthetic signals.
Abstract:
A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light before projection onto a specimen by a high numerical aperture objective. After interaction with the specimen, the collected light is passes through a wavelength dispersive element that projects the range of AOIs along one direction and wavelength components along another direction of a two-dimensional detector. Thus, the measurement signals detected at each pixel of the detector each represent a scatterometry signal for a particular AOI and a particular wavelength. In another aspect, a hyperspectral detector is employed to simultaneously detect measurement signals over a large wavelength range, range of AOIs, and range of azimuth angles.
Abstract:
Disclosed are apparatus and methods for determining optimal focus for a photolithography system. A plurality of optical signals are acquired from a particular target located in a plurality of fields on a semiconductor wafer, and the fields were formed using different process parameters, including different focus values. A feature is extracted from the optical signals related to changes in focus. A curve is fitted to the extracted feature of the optical signals as a function of focus. An extreme point in the curve is determined and reported as an optimal focus for use in the photolithography system.