Abstract:
In some embodiments, an apparatus includes an automatic integrated circuit (IC) handler having a change kit. The change kit has a plunger moveably disposable onto an automatic test equipment (ATE). In such embodiments, the ATE is configured to receive an integrated circuit having an optical interface. The plunger has a first position and a second position. In such embodiments, the plunger is out of contact with the integrated circuit when the plunger is in the first position. The plunger includes an optical connector operatively coupled to the optical interface of the integrated circuit when the plunger is in the second position.
Abstract:
Photonic and electronic integrated circuits can be cooled using variable conductance heat pipes containing a non-condensable gas in addition to a phase-changing working fluid. To package the heat pipe with a subassembly including the integrated circuits in a standard housing providing a heat sink contact area, the heat pipe is oriented, in some embodiments, with its axis between evaporator and condenser ends substantially perpendicular to the direction along which the integrated circuit subassembly is separated from the heat sink contact area, and a portion of the exterior surface of the heat pipe is thermally insulated, with a suitable thermal insulation structure, from the heat sink contact area.
Abstract:
In some embodiments, an apparatus includes an optical transmitter module that can be electrically coupled to an electrical serializer/deserializer and a controller. The optical transmitter module can include an electrical detector that can receive an in-band signal. The electrical detector can send to the controller a first power error signal and a second power error signal based on the in-band signal. The controller can send a correction control signal to the electrical serializer/deserializer based on the first power error signal and the second power error signal such that the electrical serializer/deserializer sends a pre-emphasized signal to the optical transmitter module based on the correction control signal. In such embodiments, the first power error signal, the second power signal and the correction control signal are out-of-band signals.
Abstract:
In some embodiments, a system includes a set of servers, a set of switches within a switch fabric, and an optical device. The optical device is operatively coupled to the set of servers via a first set of optical fibers. Each server from the set of servers is associated with at least one wavelength from a set of wavelengths upon connection to the optical device. The optical device is operatively coupled to each switch from a set of switches via an optical fiber from a second set of optical fibers. The optical device, when operative, wavelength demultiplexes optical signals received from each switch from the set of switches, and sends, for each wavelength from the set of wavelengths, optical signals for that wavelength to the server from the set of servers.
Abstract:
An article may include an optical transceiver package, which may include a photonics component mounted in the optical transceiver package. The photonics component may generate heat in an operational state. The optical transceiver package may include a sealed thermal chamber that maintains the photonics component between a lower predetermined working temperature and a higher predetermined working temperature. The sealed thermal chamber may include a material that exhibits a first thermal conductivity below a lower predetermined threshold temperature and a second thermal conductivity higher than the first thermal conductivity above an upper predetermined threshold temperature. A method may include retaining the generated heat to raise the photonics component above a lower predetermined working temperature, and conducting the generated heat away from the optical transceiver package to lower the photonics component below an upper predetermined working temperature. A system may include the optical transceiver package mounted to a printed circuit board.
Abstract:
This disclosure describes techniques to sample electrical data streams in coherent receivers. For instance, an analog-to-digital converter (ADC) samples the received electrical data stream at a sampling rate that is nominally twice or greater than twice the symbol rate of the electrical data stream that the ADC receives. A digital filter receives the digital data stream from the ADC, and digitally filters the digital data streams to output a filtered digital electrical data stream at an effective sampling rate that is less than the sampling rate and less than twice the symbol rate, and greater than or equal to the symbol rate.
Abstract:
In some embodiments, an apparatus includes an optical transmitter module that can be electrically coupled to an electrical serializer/deserializer and a controller. The optical transmitter module can include an electrical detector that can receive an in-band signal. The electrical detector can send to the controller a first power error signal and a second power error signal based on the in-band signal. The controller can send a correction control signal to the electrical serializer/deserializer based on the first power error signal and the second power error signal such that the electrical serializer/deserializer sends a pre-emphasized signal to the optical transmitter module based on the correction control signal. In such embodiments, the first power error signal, the second power signal and the correction control signal are out-of-band signals.
Abstract:
In some embodiments, an apparatus includes an optical transceiver that includes a first set of electrical transmitters operatively coupled to a switch. Each electrical transmitter from the first set of electrical transmitters is configured to transmit an electrical signal from a set of electrical signals. In such embodiments, the switch is configured to switch an electrical signal from the set of electrical signals such that the set of electrical signals are transmitted via a second set of electrical transmitters. Each electrical transmitter from the second set of electrical transmitters is operatively coupled to an optical transmitter from a set of optical transmitters. The set of optical transmitters is operatively coupled to an optical multiplexer. In such embodiments, at least one electrical transmitter from the second set of electrical transmitters is associated with a failure within the optical transceiver.
Abstract:
In some embodiments, an apparatus includes an automatic integrated circuit (IC) handler having a change kit. The change kit has a plunger moveably disposable onto an automatic test equipment (ATE). In such embodiments, the ATE is configured to receive an integrated circuit having an optical interface. The plunger has a first position and a second position. In such embodiments, the plunger is out of contact with the integrated circuit when the plunger is in the first position. The plunger includes an optical connector operatively coupled to the optical interface of the integrated circuit when the plunger is in the second position.
Abstract:
An access network includes an access device having an optical interface module that outputs a plurality of pairs of optical communication signals, each of the pairs of optical communication signals comprising a modulated optical transmit signal and an unmodulated optical receive signal, each of the pairs of optical communication signals having a different wavelength. A customer premise equipment (CPE) comprises an optical interface module to receive the modulated optical transmit signal and the unmodulated optical receive signal for any of the plurality of pairs of optical communication signals. The optical interface module includes a receive module to demodulate the modulated optical transmit signal into inbound symbols and a transmit module having an optical modulator and reflective optics to modulate the unmodulated optical receive signal in accordance with a data signal and reflect a modulated optical receive signal to communicate outbound data symbols to the access device.