PASSIVE LOCKING HAND EXOSKELETON
    21.
    发明申请
    PASSIVE LOCKING HAND EXOSKELETON 有权
    被动锁定手柄EXOSKELETON

    公开(公告)号:US20160229635A1

    公开(公告)日:2016-08-11

    申请号:US14568563

    申请日:2014-12-12

    CPC classification number: A61F5/013 A61F5/05866 A61F5/05875 A61F2005/0158

    Abstract: Systems (100) and methods (600) for operating an exoskeleton disposed at least partially on a joint of a wearer's limb (118). The methods involve respectively aligning first apertures (310 or 312) of a first planar flexible element (304 or 306) of the exoskeleton with second apertures (310 or 312) of a second planar flexible element (304 or 306) of the exoskeleton. The first and second planar flexible elements abut each other. A toothed flexible element (302) is then caused to ratchetedly engage the first and second planar flexible elements by bending the joint.

    Abstract translation: 用于操作至少部分地设置在穿用者肢体(118)的关节上的外骨骼的系统(100)和方法(600)。 所述方法包括分别将外骨骼的第一平面柔性元件(304或306)的第一孔(310或312)与外骨骼的第二平面柔性元件(304或306)的第二孔(310或312)对准。 第一和第二平面柔性元件邻接。 然后通过弯曲接头使齿形柔性元件(302)棘轮地接合第一和第二平面柔性元件。

    Robotic exoskeleton multi-modal control system
    22.
    发明授权
    Robotic exoskeleton multi-modal control system 有权
    机器人外骨骼多模态控制系统

    公开(公告)号:US09339396B2

    公开(公告)日:2016-05-17

    申请号:US14452851

    申请日:2014-08-06

    Abstract: System and method for operating a robotic exoskeleton involves using a control system (107) to monitor an output one or more electrical activity sensors (202) disposed on a human operator. The control system determines if an output of the electrical activity sensors corresponds to a predetermined neural or neuromuscular condition of the user. Based on the determining step, the control system automatically chooses an operating mode from among a plurality of different operating modes. The operating mode selected determines the response the control system will have to control inputs from the human operator.

    Abstract translation: 用于操作机器人外骨骼的系统和方法涉及使用控制系统(107)来监视输出设置在人操作者上的一个或多个电活动传感器(202)。 控制系统确定电活动传感器的输出是否对应于用户的预定神经或神经肌肉状况。 基于确定步骤,控制系统从多个不同的操作模式中自动选择操作模式。 所选择的操作模式确定控制系统将必须控制来自人类操作员的输入的响应。

    ROBOTIC EXOSKELETON WITH ADAPTIVE VISCOUS USER COUPLING
    23.
    发明申请
    ROBOTIC EXOSKELETON WITH ADAPTIVE VISCOUS USER COUPLING 有权
    具有自适应VISCOUS用户耦合的机器人EXOSKELETON

    公开(公告)号:US20150290818A1

    公开(公告)日:2015-10-15

    申请号:US14302528

    申请日:2014-06-12

    Abstract: A system for preventing discomfort to a user of a robotic exoskeleton (200) determines the existence of an exoskeleton operating condition which has the potential to cause at least one of a discomfort or an injury to a user (204) when the exoskeleton is being worn by the user. Responsive to the determining, an exoskeleton control system (224) selectively controls at least one viscous coupling (208, 210) disposed at an interface location (201, 203) of the exoskeleton where a physical interaction occurs between a portion of the user and a portion of the exoskeleton when the exoskeleton is in use. The control system selectively varies a viscosity of a fluid (216) comprising the viscous coupling to control the stiffness of the interface.

    Abstract translation: 用于防止机器人外骨骼(200)的使用者的不适的系统确定当外骨骼被穿着时有可能引起使用者(204)的不适或损伤中的至少一种的外骨骼操作状况的存在 由用户 响应于确定,外骨骼控制系统(224)选择性地控制设置在外骨骼的界面位置(201,203)处的至少一个粘性耦合(208,210),其中在一部分使用者和 当外骨骼使用时,外骨骼的一部分。 控制系统选择性地改变包括粘性联轴器的流体(216)的粘度以控制界面的刚度。

    ROBOTIC EXOSKELETON WITH FALL CONTROL AND ACTUATION
    24.
    发明申请
    ROBOTIC EXOSKELETON WITH FALL CONTROL AND ACTUATION 有权
    机动飞车失控控制和执行

    公开(公告)号:US20150289997A1

    公开(公告)日:2015-10-15

    申请号:US14458766

    申请日:2014-08-13

    Abstract: Method for controlling an exoskeleton (100) involves detecting an occurrence of an uncontrolled acceleration of at least a portion of the exoskeleton, as might occur during a fall. In response, the exoskeleton is caused to automatically transition at least one motion actuator (104a, 104b) from a first operational state to a second operational state. In the first operational state, the one or more motion actuators are configured to provide a motive force for controlled movement of the exoskeleton. In the second operational state, the one or more motion actuators are configured to function as energy dampers which dissipate a shock load exerted upon the exoskeleton.

    Abstract translation: 用于控制外骨骼(100)的方法涉及检测在坠落期间可能发生的外骨骼的至少一部分的不受控加速度的发生。 作为响应,使外骨骼自动地将至少一个运动致动器(104a,104b)从第一操作状态转变到第二操作状态。 在第一操作状态下,一个或多个运动致动器构造成为外骨骼的受控运动提供动力。 在第二操作状态下,一个或多个运动致动器被配置为用作消除施加在外骨骼上的冲击载荷的能量阻尼器。

    LATENCY SMOOTHING FOR TELEOPERATION SYSTEMS
    25.
    发明申请
    LATENCY SMOOTHING FOR TELEOPERATION SYSTEMS 有权
    电话系统的延迟播放

    公开(公告)号:US20150117466A1

    公开(公告)日:2015-04-30

    申请号:US14062521

    申请日:2013-10-24

    Abstract: Systems (100) and methods (700) for increasing a predictability of Telematic Operations (“TOs”) of a Teleoperation System (“TS”). The methods involve: measuring an inherent latency of a Communications Link (“CL”) of TS which varies unpredictably over at least a first window of time; analyzing the inherent latency, which was previously measured, to determine a first reference value useful for increasing the predictability of the TOs; using the first reference value to select an amount of controlled latency to be added to CL (120) at each of a plurality of time points (502-518); and adding the amount of controlled latency to CL at each of the plurality of time points so as to increase the predictability of the TOs. In some scenarios, the amount of controlled latency added at a first time point is different than the amount of controlled latency added at a second time point.

    Abstract translation: 用于增加远程操作系统(“TS”)的远程信息业务(“TOs”)的可预测性的系统(100)和方法(700)。 所述方法包括:测量TS的通信链路(“CL”)在至少第一时间窗口上不可预测地变化的固有等待时间; 分析先前测量的固有延迟,以确定有用于增加TO的可预测性的第一参考值; 使用第一参考值来选择在多个时间点(502-518)中的每个时刻被添加到CL(120)的受控等待时间量; 并且在多个时间点的每一个时刻将控制的等待时间量加到CL中,以增加TO的可预测性。 在某些情况下,在第一时间点添加的受控延迟量不同于在第二时间点添加的受控延迟量。

    Telematic interface with directional translation
    26.
    发明授权
    Telematic interface with directional translation 有权
    具有定向转换功能的远程通讯接口

    公开(公告)号:US09002517B2

    公开(公告)日:2015-04-07

    申请号:US14494635

    申请日:2014-09-24

    Abstract: Method and system for telematic control of a slave device. Displacement of a user interface control is sensed with respect to a control direction. A first directional translation is performed to convert data specifying the control direction to data specifying a slave direction. The slave direction will generally be different from the control direction and defines a direction that the slave device should move in response to the physical displacement of the user interface. A second directional translation is performed to convert data specifying haptic sensor data to a haptic feedback direction. The haptic feedback direction will generally be different from the sensed direction and can define a direction of force to be generated by at least one component of the user interface. The first and second directional translation are determined based on a point-of-view of an imaging sensor.

    Abstract translation: 从属设备远程信息处理的方法和系统。 相对于控制方向检测用户界面控制的位移。 执行第一定向转换以将指定控制方向的数据转换为指定从方向的数据。 从动方向通常与控制方向不同,并且定义了从属设备响应于用户接口的物理位移而移动的方向。 执行第二定向转换以将指定触觉传感器数据的数据转换为触觉反馈方向。 触觉反馈方向通常不同于感测到的方向,并且可以定义由用户界面的至少一个部件产生的力的方向。 基于成像传感器的视点来确定第一和第二定向平移。

    Systems and methods for controlling movement of unmanned vehicles
    27.
    发明授权
    Systems and methods for controlling movement of unmanned vehicles 有权
    用于控制无人驾驶车辆运动的系统和方法

    公开(公告)号:US08965620B2

    公开(公告)日:2015-02-24

    申请号:US13761321

    申请日:2013-02-07

    Abstract: Control units (10) for use with unmanned vehicles (12) include an input device (50) that moves in response to a user input, sensors (70) coupled to the input device (50), and a controller (16). The sensors (70) generate outputs related to the movement of the input device (50). The controller (16) determines a target displacement of the unmanned vehicle (12) based on the outputs of the sensors (70), and generates a control input related to the target displacement. The control input, when received by the unmanned vehicle (12), causes the unmanned vehicle (12) to substantially attain the target displacement. The position of the vehicle (12) is thus controlled by directly controlling the displacement of the vehicle (12).

    Abstract translation: 与无人驾驶车辆(12)一起使用的控制单元(10)包括响应于用户输入而移动的输入装置(50),耦合到输入装置(50)的传感器(70)和控制器(16)。 传感器(70)产生与输入装置(50)的移动有关的输出。 控制器(16)基于传感器(70)的输出来确定无人驾驶车辆(12)的目标位移,并且生成与目标位移有关的控制输入。 当由无人驾驶车辆(12)接收时,控制输入使得无人驾驶车辆(12)基本达到目标位移。 因此,通过直接控制车辆(12)的位移来控制车辆(12)的位置。

    Hybrid gesture control haptic system
    28.
    发明授权
    Hybrid gesture control haptic system 有权
    混合手势控制触觉系统

    公开(公告)号:US08954195B2

    公开(公告)日:2015-02-10

    申请号:US13672774

    申请日:2012-11-09

    CPC classification number: B25J13/025 B25J13/02 B25J13/081 B25J13/084

    Abstract: System (100) and methods (500) for remotely controlling a slave device (102). The methods involve: using a Hybrid Hand Controller (“HHC”) as a full haptic controller to control the slave device when the HHC (406) is coupled to a docking station (460); detecting when the HHC is or is being physically de-coupled from the docking station; automatically and seamlessly transitioning an operational mode of at least the HHC from a full haptic control mode to a gestural control mode, in response to a detection that the HHC is or is being de-coupled from the docking station; and using at least the HHC as a portable gestural controller to control the slave device when the HHC is de-coupled from the docking station.

    Abstract translation: 用于远程控制从设备(102)的系统(100)和方法(500)。 该方法包括:当HHC(406)耦合到对接站(460)时,使用混合手控制器(“HHC”)作为完全触觉控制器来控制从设备; 检测何时HHC正在或者正在与对接站物理去耦合; 响应于HHC正在或正在从对接站去耦合的检测,将至少HHC的操作模式从完全触觉控制模式自动地和无缝地转换到手势控制模式; 并且当HHC从对接站解耦时,至少使用HHC作为便携式手势控制器来控制从设备。

    HYBRID GESTURE CONTROL HAPTIC SYSTEM
    29.
    发明申请
    HYBRID GESTURE CONTROL HAPTIC SYSTEM 有权
    混合风格控制习惯系统

    公开(公告)号:US20140135991A1

    公开(公告)日:2014-05-15

    申请号:US13672774

    申请日:2012-11-09

    CPC classification number: B25J13/025 B25J13/02 B25J13/081 B25J13/084

    Abstract: System (100) and methods (500) for remotely controlling a slave device (102). The methods involve: using a Hybrid Hand Controller (“HHC”) as a full haptic controller to control the slave device when the HHC (406) is coupled to a docking station (460); detecting when the HHC is or is being physically de-coupled from the docking station; automatically and seamlessly transitioning an operational mode of at least the HHC from a full haptic control mode to a gestural control mode, in response to a detection that the HHC is or is being de-coupled from the docking station; and using at least the HHC as a portable gestural controller to control the slave device when the HHC is de-coupled from the docking station.

    Abstract translation: 用于远程控制从设备(102)的系统(100)和方法(500)。 该方法包括:当HHC(406)耦合到对接站(460)时,使用混合手控制器(“HHC”)作为完全触觉控制器来控制从设备; 检测何时HHC正在或者正在与对接站物理去耦合; 响应于HHC正在或正在从对接站去耦合的检测,将至少HHC的操作模式从完全触觉控制模式自动地和无缝地转换到手势控制模式; 并且当HHC从对接站解耦时,至少使用HHC作为便携式手势控制器来控制从设备。

    ROBOT MANIPULATOR SYSTEM
    30.
    发明申请

    公开(公告)号:US20180154521A1

    公开(公告)日:2018-06-07

    申请号:US15372102

    申请日:2016-12-07

    CPC classification number: B25J9/1664 B25J15/0066 B25J15/0483 G05B2219/39468

    Abstract: Robotic manipulator arm has an end portion to which one or more end effector appliances can be operably mounted for performing one or more manipulator arm operations. A control system has access to a plurality of different end effector appliance parameter sets which are respectively associated with the plurality of different end effector appliances. A user interface facilitates identification to the control system of one or more of the different end effector appliances which are installed on the manipulator arm. The control system is responsive to the identification to modify a control algorithm.

Patent Agency Ranking