Abstract:
Systems, tools, and methods are presented for processing a plurality of spectral ranges from an electromagnetic radiation that has been interacted with a fluid. Each spectral range within the plurality corresponds to a property of the fluid or a constituent therein. In one instance, a series of spectral analyzers, each including an integrated computational element coupled to an optical transducer, forms a monolithic structure to receive interacted electromagnetic radiation from the fluid. Each spectral analyzer is configured to process one of the plurality of spectral ranges. The series is ordered so spectral ranges are processed progressively from shortest wavelengths to longest wavelengths as interacted electromagnetic radiation propagates therethrough. Other systems, tools, and methods are presented.
Abstract:
A system and method to design highly-sensitive Integrated Computational Elements for optical computing devices. A harmonic line shape is defined and used to simulate an optical response function which has a plurality of parameters that are varied until an ideal optical response function is determined. The ideal optical response function will be that function which maximizes the output sensitivity and/or minimizes the Standard Error of Calibration. Thereafter, the method designs a film stack having an optical response function that matches the ideal transmission function, and an ICE is fabricated based upon this design.
Abstract:
A sample analysis tool includes a sample chamber to hold a sample. The tool also includes a broadband angle-selective filter arranged along an optical path with the sample chamber. The tool also includes an electromagnetic radiation (ER) transducer that outputs a signal in response to electromagnetic radiation that passes through the broadband angle-selective filter. The tool also includes a storage device that stores data corresponding to the signal output from the ER transducer, wherein the data indicates a property of the sample.
Abstract:
An example formation fluid analysis tool includes an optical element and a detector configured to receive light passed through the optical element. The optical element is configured to receive light from a fluid sample and comprises a substrate, an integrated computational element (ICE) fabricated on a first side of the substrate, and an optical filter fabricated on a second side of the substrate opposite the first side.
Abstract:
An optical computing device includes a light source that emits electromagnetic radiation into an optical train extending from the light source to a detector. A substance optically interacts with the electromagnetic radiation. A processor array is positioned in the optical train and includes a plurality of integrated computational element (ICE) cores that optically interact with the electromagnetic radiation, wherein the detector receives modified electromagnetic radiation generated through optical interaction of the electromagnetic radiation with the substance and the processor array. A weighting array is positioned in the optical train and includes a plurality of weighting devices that optically apply corresponding weighting factors to the modified electromagnetic radiation. A broadband angle selective filter (BASF) array is positioned in the optical train to selectively pass electromagnetic radiation at a predetermined angle of incidence. The detector generates an output signal indicative of a characteristic of the substance.
Abstract:
Systems and methods of controlling a deposition rate during thin-film fabrication are provided. A system as provided may include a chamber, a material source contained within the chamber, an electrical component to activate the material source, a substrate holder to support the multilayer stack and at least one witness sample. The system may further include a measurement device and a computational unit. The material source provides a layer of material to the multilayer stack and to the witness sample at a deposition rate controlled at least partially by the electrical component and based on a correction value obtained in real-time by the computational unit. In some embodiments, the correction value is based on a measured value provided by the measurement device and a computed value provided by the computational unit according to a model.
Abstract:
A system and method to design highly-sensitive Integrated Computational Elements for optical computing devices. A harmonic line shape is defined and used to simulate an optical response function which has a plurality of parameters that are varied until an ideal optical response function is determined. The ideal optical response function will be that function which maximizes the output sensitivity and/or minimizes the Standard Error of Calibration. Thereafter, the method designs a film stack having an optical response function that matches the ideal transmission function, and an ICE is fabricated based upon this design.
Abstract:
Systems, tools, and methods are presented for processing a plurality of spectral ranges from an electromagnetic radiation that has been interacted with a fluid. Each spectral range within the plurality corresponds to a property of the fluid or a constituent therein. In one instance, a series of spectral analyzers, each including an integrated computational element coupled to an optical transducer, forms a monolithic structure to receive interacted electromagnetic radiation from the fluid. Each spectral analyzer is configured to process one of the plurality of spectral ranges. The series is ordered so spectral ranges are processed progressively from shortest wavelengths to longest wavelengths as interacted electromagnetic radiation propagates therethrough. Other systems, tools, and methods are presented.
Abstract:
A method and system for performing a pressure test. The method may include inserting a formation testing tool into a wellbore to a first location within the wellbore based at least in part on a figure of merit. The formation testing tool may include at least one probe, a pump disposed within the formation testing tool and connect to the at least one probe by at least one probe channel and at least one fluid passageway, and at least one stabilizer disposed on the formation testing tool. The method may further include activating the at least one stabilizer, wherein the at least one stabilizer is activated into a surface of the wellbore and performing the pressure test and determining at least one formation property from the pressure test.
Abstract:
Disclosed herein are methods and systems for capture and measurement of a target component. A fluid sampling tool for sampling fluid from a subterranean formation may include a sample chamber having a fluid inlet, wherein the sample chamber is lined with a coating of a material that can reversibly hold a target component.