Abstract:
A method, computer program product, and computer system for identifying a first portion of a facial image in a first image, wherein the first portion includes noise. A corresponding portion of the facial image is identified in a second image, wherein the corresponding portion includes less noise than the first portion. One or more filter parameters of the first portion are determined based upon, at least in part, the first portion and the corresponding portion. At least a portion of the noise from the first portion is smoothed based upon, at least in part, the one or more filter parameters. At least a portion of face specific details from the corresponding portion is added to the first portion.
Abstract:
A video server receives an uploaded video and determines whether the video contains third-party content and which portions of the uploaded video match third-party content. The video server determines whether to degrade the matching portions and/or how (e.g., extent, type) to do so. The video server separates the matching portion from original portions in the uploaded video and generates a degraded version of the matching content by applying an effect such as compression, edge distortion, temporal distortion, noise addition, color distortion, or audio distortion. The video server combines the degraded portions with the original portions to output a degraded version of the uploaded video. The video server stores and/or distributes the degraded version of the uploaded video. The video server may offer the uploading user licensing terms with the content owner that the user may accept to reverse the degradation.
Abstract:
Systems and methods for facilitating media fingerprinting are provided. In one aspect, a system can include: a memory, a microprocessor, a communication component that receives media; and a media fingerprinting component that fingerprints the media. The media fingerprinting component employs a fingerprint generation component stored in the memory and includes: a first hash generation component that generates sets of hashes corresponding to versions of the media; and a second hash generation component that computes a final hash based, at least, on hashing the sets of hashes. In some aspects, the media fingerprinting component can generate a flip-resistant fingerprint based, at least, on the final hash. In some aspects, the flip-resistant fingerprint is the final hash.
Abstract:
A linear function describing a framework for identifying an object of class k in an image sample x may be described by: wk*x+bk, where bk is the bias term. The higher the value obtained for a particular classifier, the better the match or strength of identity. A method is disclosed for classifier and/or content padding to convert dot-products to distances, applying a hashing and/or nearest neighbor technique on the resulting padded vectors, and preprocessing that may improve the hash entropy. A vector for an image, an audio, and/or a video may be received. One or more classifier vectors may be obtained. A padded image, video, and/or audio vector and classifier vector may be generated. A dot product may be approximated and a hashing and/or nearest neighbor technique may be performed on the approximated dot product to identify at least one class (or object) present in the image, video, and/or audio.
Abstract:
Systems and methods for facilitating video fingerprinting are provided. In one embodiment, a system can include: a memory, a microprocessor, a communication component that receives a video, and a video fingerprinting component that fingerprints the video with a subfingerprint (SFP). The video fingerprinting component can employ an SFP component stored in the memory and that comprises: a feature extraction component that determines local descriptors for at least one frame of a video; and a quantization component that quantizes the local descriptors to generate first frame information including a set of values for the at least one frame. The SFP component can also include: an accumulation component that accumulates first frame information over a snippet of the video; and an SFP generation component that computes the SFP associated with the snippet. The SFP can be computed based on a hash based on the accumulated first frame information over the snippet.
Abstract:
Image similarity operations are performed in which a seed image is analyzed, and a set of semantic classifications are determined from analyzing the seed image. The set of semantic classifications can include multiple positive semantic classifications. A distance measure is determined that is specific to the set of semantic classifications. The seed image is compared to a collection of images using the distance measure. A set of similar images is determined from comparing the seed image to the collection of images.
Abstract:
A method, computer program product, and computer system for identifying a first portion of a facial image in a first image, wherein the first portion includes noise. A corresponding portion of the facial image is identified in a second image, wherein the corresponding portion includes less noise than the first portion. One or more filter parameters of the first portion are determined based upon, at least in part, the first portion and the corresponding portion. At least a portion of the noise from the first portion is smoothed based upon, at least in part, the one or more filter parameters. At least a portion of face specific details from the corresponding portion is added to the first portion.
Abstract:
An image processing system automatically segments and labels an image using a hierarchical classification model. A global classification model determines initial labels for an image based on features of the image. A label-based descriptor is generated based on the initial labels. A local classification model is then selected from a plurality of learned local classification model based on the label-based descriptor. The local classification model is applied to the features of the input image to determined refined labels. The refined labels are stored in association with the input image.
Abstract:
A computer-implemented method, computer program product, and computing system is provided for interacting with images having similar content. In an embodiment, a method may include identifying a plurality of photographs as including a common characteristic. The method may also include generating a flipbook media item including the plurality of photographs. The method may further include associating one or more interactive control features with the flipbook media item.
Abstract:
Systems and methods facilitating random number generation of hashes for video and/or audio are provided. In one embodiment, a system can include: a memory, and a microprocessor that executes computer executable components. The components can include a weighted distribution generation component that can generate a sampling distribution of a weighted combination of uniform distributions, and obtain a sample value from the sampling distribution. In one embodiment, horizontal regions of substantially equal area can be identified. The sample value can be obtained by selecting one of the horizontal regions, and uniformly selecting a coordinate from the horizontal region. The coordinate can correspond to a value on a horizontal axis of the sampling distribution, and the value can be equal to a sample value. The sample value can be employed to compute a hash employed in video and/or audio fingerprinting and/or in computing image descriptors for video.