Abstract:
Clustering algorithms such as k-means clustering algorithm are used in applications that process entities with spatial and/or temporal characteristics, for example, media objects representing audio, video, or graphical data. Feature vectors representing characteristics of the entities are partitioned using clustering methods that produce results sensitive to an initial set of cluster seeds. The set of initial cluster seeds is generated using principal component analysis of either the complete feature vector set or a subset thereof. The feature vector set is divided into a desired number of initial clusters and a seed determined from each initial cluster.
Abstract:
An image processing system automatically segments and labels an image using a hierarchical classification model. A global classification model determines initial labels for an image based on features of the image. A label-based descriptor is generated based on the initial labels. A local classification model is then selected from a plurality of learned local classification model based on the label-based descriptor. The local classification model is applied to the features of the input image to determined refined labels. The refined labels are stored in association with the input image.
Abstract:
A video is segmented to produce volumetric video regions. Descriptors are created for the video regions. A region graph is created for the video, where the region graph has weighted edges incident to video regions and the weight of an edge is calculated responsive to the descriptors of the video regions incident to the edge. The region graph is segmented responsive to the weights of the edges incident to the video regions to produce a new region graph having new volumetric video regions comprised of merged video regions of the first region graph. The descriptions of the region graphs are stored in a data storage.
Abstract:
Embodiments generally relate to summarizing a photo album. In one embodiment, a method includes grouping photos into a plurality of groups of photos, and selecting a plurality of representative photos, where each representative photo represents a respective group from the plurality of groups, where the selecting is based on a quality score of each of the photos, and where each quality score is based on different types of attributes. The method also includes providing the plurality of representative photos to a user.
Abstract:
Embodiments generally relate to summarizing a photo album in a social network system. In one embodiment, a method includes grouping photos into a plurality of groups of photos, and selecting a plurality of representative photos, where each representative photo represents a respective group from the plurality of groups, where the selecting is based on a quality score of each of the photos, and where each quality score is based on different types of attributes. The method also includes enabling the plurality of representative photos to be shared.
Abstract:
An exemplar dictionary is built from exemplars of digital content for determining predictor blocks for encoding and decoding digital content. The exemplar dictionary organizes the exemplars as clusters of similar exemplars. Each cluster is mapped to a label. Machine learning techniques are used to generate a prediction model for predicting a label for an exemplar. The prediction model can be a hashing function that generates a hash key corresponding to the label for an exemplar. The prediction model learns from a training set based on the mapping from clusters to labels. A new mapping is obtained that improves a measure of association between clusters and labels. The new mapping is used to generate a new prediction model. This process is repeated in order to iteratively refine the machine learning modes generated.
Abstract:
Compression of an image is performed based on prediction of target blocks of an image from candidate source blocks of the image. Heuristics are used for identifying the candidate source blocks, for example, source blocks are selected from within a cluster of similar blocks obtained by K-means clustering. For each target block, a region adjacent to the target block is identified and a set of candidate source blocks along with candidate source regions adjacent to the candidate source blocks are identified. The candidate source regions are ranked based on the differences between the candidate source regions and the target source region. Each candidate source block is described using its rank and residual information describing differences between the candidate source block and the target block. The candidate source block that can be described using a minimum amount of information is selected for predicting the target block.
Abstract:
An exemplar dictionary is built from example image blocks for determining predictor blocks for encoding and decoding images. The exemplar dictionary comprises a hierarchical organization of example image blocks. The hierarchical organization of image blocks is obtained by clustering a set of example image blocks, for example, based on k-means clustering. Performance of clustering is improved by transforming feature vectors representing the image blocks to fewer dimensions. Principal component analysis is used for determining feature vectors with fewer dimensions. The clustering performed at higher levels of the hierarchy uses fewer dimensions of feature vectors compared to lower levels of hierarchy. Performance of clustering is improved by processing only a sample of the image blocks of a cluster. The clustering performed at higher levels of the hierarchy uses lower sampling rates as compared to lower levels of hierarchy.