Abstract:
An extreme ultraviolet light (EUV) generation system is configured to improve conversion efficiency of energy of a laser system to EUV energy by improving the efficiency of plasma generation. The EUV generation system includes a target generation unit configured to output a target toward a plasma generation region in a chamber. The laser system is configured to generate a first pre-pulse laser beam, a second pre-pulse laser beam, and a main pulse laser beam so that the target is irradiated with the first pre-pulse laser beam, the second pre-pulse laser beam, and the main pulse laser beam in this order. In addition, the EUV generation system includes a controller configured to control the laser system so that a fluence of the second pre-pulse laser beam is equal to or higher than 1 J/cm2 and equal to or lower than a fluence of the main pulse laser beam.
Abstract translation:远端紫外线(EUV)发生系统被配置为通过提高等离子体产生的效率来提高激光系统的能量对EUV能量的转换效率。 EUV生成系统包括被配置为将目标朝向室内的等离子体产生区域输出的目标生成单元。 激光系统被配置为产生第一预脉冲激光束,第二预脉冲激光束和主脉冲激光束,使得靶被第一预脉冲激光束照射,第二预脉冲激光 光束和主脉冲激光束。 此外,EUV生成系统包括:控制器,被配置为控制激光系统,使得第二预脉冲激光束的能量密度等于或高于1J / cm 2,并且等于或低于主脉冲的能量密度 激光束。
Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.
Abstract:
The extreme ultraviolet light generation system may be configured to irradiate a target with a first pulse laser beam and a second pulse laser beam to turn the target into plasma thereby generating extreme ultraviolet light. The system may include a chamber having at least one aperture configured to introduce the first pulse laser beam and the second pulse laser beam; a target supply device configured to supply the target to a predetermined region in the chamber; a first laser apparatus configured to output the first pulse laser beam with which the target in the chamber is to be irradiated, the first pulse laser beam having pulse duration less than 1 ns; and a second laser apparatus configured to output the second pulse laser beam with which the target which has been irradiated with the first pulse laser beam is to be further irradiated.
Abstract:
An EUV (Extreme Ultra Violet) light source device ionizes a target material in an ionizer, and supplies the ionized target material to a point of generating a plasma. This reduces the generation of debris. The ionizer simultaneously irradiates laser beams of plural wavelengths corresponding to the excited level of tin on a target material to ionize the target material. The ionized target material is extracted from the ionizer with a high voltage applied from an ion beam extractor, and accelerated and supplied to a plasma generation chamber. When driver laser beam is irradiated on the ionized target material, a plasma is generated, thereby emitting EUV radiation.
Abstract:
An extreme ultraviolet light (EUV) generation system is configured to improve conversion efficiency of energy of a laser system to EUV energy by improving the efficiency of plasma generation. The EUV generation system includes a target generation unit configured to output a target toward a plasma generation region in a chamber. The laser system is configured to generate a first pre-pulse laser beam, a second pre-pulse laser beam, and a main pulse laser beam so that the target is irradiated with the first pre-pulse laser beam, the second pre-pulse laser beam, and the main pulse laser beam in this order. In addition, the EUV generation system includes a controller configured to control the laser system so that a fluence of the second pre-pulse laser beam is equal to or higher than 1 J/cm2 and equal to or lower than a fluence of the main pulse laser beam.
Abstract:
A Thomson scattering measurement system according to the present disclosure includes: a transfer optical system provided on an optical path of a slit light beam group generated by division through a slit array and configured to transfer the slit light beam group to a plurality of transfer image groups separated from each other; and a second slit provided on an optical path of light from the transfer image groups and configured to selectively allow light from a plurality of transfer images positioned on a straight line extending in a direction corresponding to a first direction to pass through the second slit, the transfer images corresponding to slit light beams at positions different from each other in a second direction in the slit light beam group among transfer images included in the transfer image groups.
Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.
Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.
Abstract:
An extreme ultraviolet light generation system includes a chamber; a target generation unit configured to output a target toward a plasma generation region in the chamber; a laser system configured to generate a first pre-pulse laser beam, a second pre-pulse laser beam, and a main pulse laser beam so that the target is irradiated with the first pre-pulse laser beam, the second pre-pulse laser beam, and the main pulse laser beam in this order; and a controller configured to control the laser system so that a fluence of the second pre-pulse laser beam is equal to or higher than 1 J/cm2 and equal to or lower than a fluence of the main pulse laser beam.
Abstract translation:一种极紫外光发生系统包括一个室; 目标产生单元,被配置为将所述目标朝向所述室中的等离子体产生区域输出; 激光系统,其被配置为产生第一预脉冲激光束,第二预脉冲激光束和主脉冲激光束,使得靶被第一预脉冲激光束照射,第二预脉冲激光束 ,主脉冲激光束依次为 以及控制器,被配置为控制所述激光系统,使得所述第二预脉冲激光束的能量密度等于或高于1J / cm 2并且等于或低于所述主脉冲激光束的能量密度。
Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.