Abstract:
Provided is a reversible electrochemical mirror including a first substrate and a second substrate, which face each other, a first transparent electrode disposed on the first substrate and facing the second substrate, a second transparent electrode disposed on the second substrate and facing the first transparent electrode, an electrolyte solution interposed between the first transparent electrode and the second transparent electrode, and a counter electrode material layer disposed on the second transparent electrode and contacting the electrolyte solution.
Abstract:
Provided is an electrochromic device, which may prevent a damage of an electrode and include a lower substrate and an upper substrate configured to face each other with an electrolyte layer therebetween, an upper electrode provided between the electrolyte layer and the upper substrate, a lower electrode provided between the electrolyte layer and the lower substrate, an upper ion reactive layer provided between the upper electrode and the electrolyte layer, and a lower protection layer provided between the lower electrode and the electrolyte layer and configured to prohibit the lower electrode and the electrolyte layer from contacting.
Abstract:
A dual-mode display including a substrate and a plurality of sub-pixels on the substrate, in which each sub-pixel includes, a reflective device having an optical filter function which reflects different color according to electrical signals applied from outside the display, and an emissive device disposed on the reflective device, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided is a method of fabricating an organic scattering layer. The method may include providing a deposition apparatus with a reaction chamber and a source chamber, loading a substrate in the reaction chamber, supplying carrier gas into the source chamber that may be configured to supply an evaporated organic source material into the reaction chamber, a temperature of the carrier gas ranging from 25° C. to 50° C., and spraying the carrier gas and the evaporated organic source material into the reaction chamber through a showerhead to deposit an organic scattering layer on the substrate, the organic scattering layer including organic particles, which may be provided in a molecularized form of the evaporated organic source material, and thereby having an uneven surface.
Abstract:
Provided is an organic light emitting diodes (OLED) and method of manufacturing the OLED. The OLED includes: a substrate; a light scattering layer having an uneven shape on the substrate; a transparent electrode film provided directly on and in contact with the light scattering layer; an organic light emitting layer on the transparent electrode film; and an electrode on the organic light emitting layer.The method of manufacturing the OLED includes: disposing a light scattering layer on a substrate; providing a transparent electrode film on the light scattering layer; and transferring the transparent electrode film to be directly on and in contact with the light scattering layer.
Abstract:
Provided is a dual-mode display including a substrate and a plurality of sub-pixels on the substrate, in which each sub-pixel includes an emissive device, a color selection reflector disposed on one side of the emissive device, and an optical shutter disposed on another side of the emissive device, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided are an electronic device and a fabrication method thereof. The electronic device according to the concept of the present invention includes auxiliary interconnections disposed on a substrate, a light extraction layer that is provided on the substrate and fills between the auxiliary interconnection, and a first electrode provided on the auxiliary interconnections and the light extraction layer, wherein the light extraction layer may have a first surface facing the substrate and a second surface opposite to the first surface, the first surface may have protrusions, and the auxiliary interconnections may include a material having a lower resistance than the first electrode. Since electrical properties of the electronic device are improved, uniform light emission characteristics may be realized.
Abstract:
Provided is a pressure sensitive display device including a sensing substrate, a reaction substrate provided on the sensing substrate, and spacers provided between the sensing substrate and the reaction substrate to space the sensing substrate apart from the reaction substrate. Here, the sensing substrate includes a flexible substrate and a touch electrode provided on one surface of the flexible substrate, which faces the reaction substrate. The reaction substrate includes a transparent substrate, a transparent electrode provided on one surface of the transparent substrate, which faces the sensing substrate, and a light emitting layer disposed on the transparent electrode.
Abstract:
An organic light-emitting device includes a substrate, a bottom electrode on the substrate, an organic light-emitting layer on the bottom electrode, and a top electrode on the organic light-emitting layer, wherein the top electrode includes a first electrode part, a grid-shaped or plate-shaped second electrode part on the first electrode part, and an adhesive layer on the second electrode part.
Abstract:
An organic light-emitting device includes a substrate, a bottom electrode on the substrate, an organic light-emitting layer on the bottom electrode, and a top electrode on the organic light-emitting layer, wherein the top electrode includes a first electrode part, a grid-shaped or plate-shaped second electrode part on the first electrode part, and an adhesive layer on the second electrode part.