Abstract:
Disclosed are a video encoding/decoding method and apparatus including a plurality of views. The video decoding method including the plurality of views comprises the steps of: inducing basic combination motion candidates for a current Prediction Unit (PU) to configure a combination motion candidate list; inducing expanded combination motion candidates for the current PU when the current PU corresponds to a depth information map or a dependent view; and adding the expanded combination motion candidates to the combination motion candidate list.
Abstract:
Disclosed is a method and apparatus for decoding video data. The method for decoding video data includes receiving coded video data including multi-view video data and depth data corresponding to the video data, acquiring motion data for inter-view prediction of a coding unit of the coded video data from the depth data, and performing inter-view prediction based on the motion data, and restoring video data according to the multi-view video data including the coding unit and the depth data based on the motion prediction.
Abstract:
A video decoding method for depth information in accordance with an embodiment of the present invention includes generating a prediction block of a current block for the depth information, generating a restored block of the current block based on the prediction block, and performing filtering on the restored block, whether or not to perform the filtering can be determined based on block information about the current block and coding information about the current block.
Abstract:
The present invention relates to a video decoding method, the video decoding method according to an embodiment of the present invention comprises, obtaining sub-picture information of a current sub-picture through at least one signaling level and decoding the current sub-picture using the sub-picture information, wherein the sub-picture information is obtained for each decoded sub-picture.
Abstract:
Disclosed herein are a method, apparatus, and storage medium for image encoding/decoding using a reference picture. A reference picture list is configured for encoding/decoding of a target block. Upon configuring the reference picture list, a sequence parameter set and a slice header are used. A picture is divided into sub-pictures and/or slices, and reference picture lists are configured for the sub-pictures and/or slices resulting from division. Reference picture lists for slices may be related to each other, and a current reference picture and a future reference picture in one reference picture list may be used in an additional reference picture list.
Abstract:
Disclosed herein are a method, an apparatus and a storage medium for image encoding/decoding using a palette mode. Prediction using a palette mode may be performed for a target block. Various types of predictions may be performed for the target block, and pieces of information to be signaled from an encoding apparatus to a decoding apparatus may be changed depending on the type of prediction to be performed for the target block. Determination of the pieces of information to be signaled may be optimized for the case where a palette mode is to be used for the target block, and thus efficiency of image encoding and decoding may be improved.
Abstract:
Disclosed herein are a video processing method, apparatus and storage medium using the resolution of a reference picture. Filtering is performed based on resolutions of reference pictures of blocks forming a boundary. The resolutions of the reference pictures may define filtering. Depending on whether the resolutions of the reference pictures are different from each other, one or more filter selection parameters for filtering may be determined or updated. Further, based on whether the resolutions of the reference pictures are different from each other, the boundary strength of the filter may be determined. Because filtering is defined using the resolutions of reference pictures, performance of encoding and/or decoding may be improved.
Abstract:
Disclosed are an image encoding method using a skip mode and a device using the method. The image encoding method may comprise the steps of: judging whether there is residual block data of a prediction target block on the basis of predetermined data indicating whether residual block data has been encoded; and, if there is residual block data, restoring the prediction target block on the basis of the residual block data and an intra-screen predictive value of the prediction target block. Consequently, encoding and decoding efficiency can be increased by carrying out the encoding and decoding of screen residual data only for prediction target blocks where there is a need for a residual data block in accordance with screen similarity.
Abstract:
The present disclosure provides a multi-view image decoding method including: obtaining, from a bitstream, three-dimensional geometry information indicating a three-dimensional space of a multi-view image, view independent component information indicating a view independent component, which is uniformly applied to every view, and view dependent component information indicating a view dependent component, which is differently applied according to views; determining a view dependent component for a texture map of a current view from the view dependent component information; generating the texture map of the current view from a view independent component of the view independent component information and the determined view dependent component for the current view; and reconstructing a current view image according to a three-dimensional space that is constructed according to the texture map of the current view and the three-dimensional geometry information.
Abstract:
Disclosed herein are a method, an apparatus and a storage medium for image encoding/decoding. For efficient image compression, efficient syntax is required. Pieces of information required for image decoding may be structurally or semantically associated with each other. Based on this association, whether signaling of one piece of information is to be performed may be determined based on another piece of information. Further, based on this association, the signaling order or priority of multiple pieces of information may be determined. Depending on this determination, based on the number of subpictures present in a picture in high-level syntax, the number of slices present in the picture may be selectively signaled.