Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
Abstract:
Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
Abstract:
Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
Abstract:
Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current-guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a substrate) may be provided. For some embodiments, both a current-guiding structure and second current path may be provided.
Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
Abstract:
Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
Abstract:
A light emitting diode (LED) package includes a substrate, a light emitting diode (LED) die mounted to the substrate, a frame on the substrate, a wire bonded to the light emitting diode (LED) die and to the substrate, and a transparent dome configured as a lens encapsulating the light emitting diode (LED) die. A method for fabricating a light emitting diode (LED) package includes the steps of: providing a substrate; forming a frame on the substrate; attaching a light emitting diode (LED) die to the substrate; wire bonding a wire to the light emitting diode (LED) die and to the substrate; and dispensing a transparent encapsulation material on the frame configured to form a transparent dome and lens for encapsulating the light emitting diode (LED) die.
Abstract:
Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.