Abstract:
Methods and systems for a handheld portable communication device for configuring connection to and use of local and remote resources are disclosed and may include discovering available networks and resources, establishing a route between the handheld wireless communication device and a selected one or more of the available resources via a selected one or more of the available networks based on user preference criteria stored in the handheld wireless communication device, and communicating multimedia data between the handheld wireless communication device and the selected one or more of the available resources via the established route. The established route may be dynamically adjusted, based on network availability and bandwidth. The handheld wireless communication device may communicate utilizing a plurality of wireless protocols. The preference criteria stored in the handheld wireless communication device may be dynamically adjusted. The resources may be local or remote to the handheld wireless communication device.
Abstract:
A system and method is provided for processing and storing captured data in a wireless communication device based on detected biometric event data. The captured data may be acquired through a data acquisition system with devices or sensors in an integrated or distributed configuration. The captured data may include multimedia data of an event with time, date and/or location stamping, and captured physiological and behavioral biometric event data in response to the event. The captured data may be dynamically stored in a data binding format or as raw data in a local host device or communicated externally to be stored in a remote host or storage. At least one user preference may be specified for linking a biometric event data to the mapped, analyzed, categorized and stored captured data in a database. Captured data may be retrieved by matching biometric event data to at least one user preference from the database.
Abstract:
Wireless mobile communication (WMC) devices located in near proximity of each other may be enabled to form a mesh (ad hoc wireless) network. WMC devices may form and/or tear down intra-mesh connection with other WMC devices in the same mesh network. WMC devices may utilize information related to other WMC devices in the mesh network in determining formation and tearing down of intra-mesh connections. This information may comprise relative speeds, locations, and directions of movement of the WMC devices forming/tearing intra-mesh connections. Other information including data bandwidth and/or power consumption may be utilized in such determination. This information may also comprise available services advertised by WMC devices in the mesh network.
Abstract:
Systems and methods are provided that allow a secure processing system (SPS) to be implemented as a hard macro, thereby isolating the SPS from a peripheral processing system (PPS). The SPS and the PPS, combination, may form a secure element that can be used in conjunction with a host device and a connectivity device to allow the host device to engage in secure transactions, such as mobile payment over a near field communications (NFC) connection. As a result of the SPS being implemented as a hard macro isolated from the PPS, the SPS may be certified once, and re-used in other host devices without necessitating re-certification.
Abstract:
A secure processor such as a TPM generates one-time-passwords used to authenticate a communication device to a service provider. In some embodiments the TPM maintains one-time-password data and performs the one-time-password algorithm within a secure boundary associated with the TPM. In some embodiments the TPM generates one-time-password data structures and associated parent keys and manages the parent keys in the same manner it manages standard TPM keys.
Abstract:
A multi-radio mobile device comprises a plurality of different radios. When a location update occurs, the multi-radio mobile device, at a specific location, acquires location-based radio information from a remote location server. The multi-radio mobile device selects a radio for use in the specific location based on the acquired location-based radio information comprising available radios in the specific location and radio weights. The radio is selected from the available radios based on the radio weights in the specific location. Transmissions of a desired service are received in the specific location utilizing the selected radio. Location-based radio measurements reports to the remote location server are generated utilizing signal strength measurements for the received signals. Radio quality information of the available radios is calculated by the location server utilizing location-based radio measurement reports from associated users. The radio weights of the available radios are determined based on the calculated radio quality information.
Abstract:
A mobile device may be operable to determine, based on a known location of the mobile device, a location for a RF communication device that communicates with the mobile device, whenever the mobile device is within proximate range of the RF communication device. The determined location for the RF communication device may be stored in a location database in a location server and/or a memory in the RF communication device. The stored location of the RF communication device may then be used to determine a location for other mobile devices that may communicate with the RF communication device and are within proximate range of the RF communication device. The RF communication device may comprise a radio-frequency identification (RFID) device and/or a near field communication (NFC) device. The determined location for the RF communication device may comprise the known location of the mobile device.
Abstract:
Disclosed are various embodiments of an emulation device for generating a cryptographic hash value associated with program data stored in a memory of a computing device. Validation data is generated based upon the cryptographic hash value and a flush counter of the computing device. The program data is encrypted in the computing device using an implementation of an encryption algorithm configured with at least a key stored in the memory. The program data is stored in a flash memory that is external to a processor of the computing device.
Abstract:
An apparatus may comprise a secure portion of a chip and an external memory device. The secure portion of the chip may be configured to receive an encryption key, and the memory device may be configured to receive an encrypted processing code. The secure portion of the chip may be configured to verify the encrypted processing code by decrypting the encrypted processing code using the encryption key. A non-secure portion of the chip may be configured to write the encrypted processing code on the memory device while the memory device is coupled to the chip. The encryption key may be associated with an identifier of the chip.
Abstract:
Systems and methods are provided that allow a secure processing system (SPS) to be implemented as a hard macro, thereby isolating the SPS from a peripheral processing system (PPS). The SPS and the PPS, combination, may form a secure element that can be used in conjunction with a host device and a connectivity device to allow the host device to engage in secure transactions, such as mobile payment over a near field communications (NFC) connection. As a result of the SPS being implemented as a hard macro isolated from the PPS, the SPS may be certified once, and re-used in other host devices without necessitating re-certification.