Abstract:
A coprocessor with register renaming is disclosed. An apparatus includes a plurality of processors and a coprocessor respectively configured to execute processor instructions and coprocessor instructions. The coprocessor receives coprocessor instructions from ones of the processors. The coprocessor includes an array of processing elements and a result register set comprising storage elements respectively distributed within the array of processing elements. For a given member of the array of processing elements, a corresponding storage element is configured to store coprocessor instruction results generated by the given member. The result register set implements a plurality of contexts to store respective coprocessor states corresponding to coprocessor instructions received from different processors. Based on a determination that one of the contexts is inactive, the coprocessor is configured to store coprocessor instruction results corresponding to an active context within storage elements of the result register set corresponding to the inactive context.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, a system may include multiple processors and an automatic power state controller (APSC) configured to switch the processors between various operating points. The operating points may be described by data programmed into the APSC, and the APSC may include a register that is programmable with a target operating point request identifying a target operating point for the processors from among the described operating points. The data describing the operating points may also include an indication of whether or not the number of processors that may be concurrently active at the operating point is limited. Based on the indication and the number of active processors, the APSC may override the requested operating point with a reduced operating point. In some embodiments, a digital power estimator (DPE) may monitor operation of the processors and may throttle the processors when high power consumption is detected.
Abstract:
In an embodiment, a digital power estimator (DPE) may be provided that may monitor the processors to estimate the amount of power being consumed. If the estimate exceeds a power threshold, the DPE may throttle one or more of the processors. Additionally, throttling events may be monitored to determine if a change in the operating point is desired. In one embodiment, the DPE throttling events may be counted, and if the counts exceed a count threshold, a change in the operating point to a reduced operation point may be requested. Additionally, if the DPE estimate is below the power threshold (or a second power threshold), a second count of events may be maintained. If the second count exceeds a threshold and the operating point is the reduced operating point, a return to the original operating point may be requested.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
A system for managing a change in a frequency of a clock signal, including a clock generator configured to output the clock signal, a clock divider coupled to the output of the clock generator, a processor configured to select the frequency of the clock signal, and a clock management circuit. The clock management circuit may be configured to set the clock generator to adjust the clock signal to the selected frequency. The clock management circuit may be further configured to adjust a divisor value of the clock divider in a plurality of steps in response to a determination the clock signal stabilized at the selected frequency. A new divisor value may be selected during each step in the plurality of steps and each step may occur after a given time period.
Abstract:
An integrated circuit may include multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances.
Abstract:
A coprocessor with register renaming is disclosed. An apparatus includes a plurality of processors and a coprocessor respectively configured to execute processor instructions and coprocessor instructions. The coprocessor receives coprocessor instructions from ones of the processors. The coprocessor includes an array of processing elements and a result register set comprising storage elements respectively distributed within the array of processing elements. For a given member of the array of processing elements, a corresponding storage element is configured to store coprocessor instruction results generated by the given member. The result register set implements a plurality of contexts to store respective coprocessor states corresponding to coprocessor instructions received from different processors. Based on a determination that one of the contexts is inactive, the coprocessor is configured to store coprocessor instruction results corresponding to an active context within storage elements of the result register set corresponding to the inactive context.
Abstract:
A method and apparatus for reducing capacitor noise in electronic systems is disclosed. A system includes at least one functional circuit block coupled to receive a variable supply voltage. The value of the supply voltage is controlled by a power management circuit. Changing a performance state of the functional circuit block includes increasing the supply voltage for higher performance, and reducing the supply voltage for reduced performance demands. The power management circuit, in changing to a higher performance state, increases the supply voltage at a first rate. A rate control circuit causes the power management circuit to reduce the supply voltage, when changing to a lower performance state, at a second rate that is less than the first rate.