Abstract:
A lithographic apparatus comprises a system. The system comprises a first part, a second part and an energy absorbing element. The second part is configured to move relatively to the first part. The system has a gap located between the first part and the second part during an operation mode of the system. The energy absorbing element is for absorbing energy between the first part and the second part when the first part and the second part crash onto each other in a failure mode of the system. The energy absorbing element is outside the gap.
Abstract:
A method for providing a wear-resistant material on a body. A composite body that may be obtained by the method. The composite body may be a substrate holder or a reticle clamp for use in a lithographic apparatus. The method includes providing a body made of glass, ceramic or glass-ceramic; providing a wear-resistant material having a hardness of more than 20 GPa; and brazing or laser welding the wear-resistant material to the body.
Abstract:
The invention relates to elastic guiding device to support a mass with respect to a base in a support direction, wherein the stiffness in support direction compared to stiffness in other direction, for example the stiffness in vertical direction compared to the stiffness in horizontal directions is substantially increased. The invention further relates to a positioning device comprising at least one elastic guiding device, and a lithographic apparatus comprising such positioning device.
Abstract:
A motor assembly includes linear motors, each linear motor configured to generate a driving force in a driving direction and each having a first electromagnetic assembly and a second electromagnetic assembly, configured to co-operate with the first electromagnetic assembly, for generating the driving force, wherein the first electromagnetic assembly and the second electromagnetic assembly face each other and define a gap between each other in a direction perpendicular to the driving direction. A first interface connects the first electromagnetic assemblies to a common member. A second interface connects the second electromagnetic assemblies to the object to be driven. The first and second electromagnetic assemblies are stacked in the direction perpendicular to the driving direction, and the first and/or second interface is configured to enable a relative displacement between the respective first electromagnetic assemblies and the second electromagnetic assemblies in the direction perpendicular to the driving direction.
Abstract:
A lithographic apparatus is provided. The lithographic apparatus includes a reticle and an electrostatic clamp configured to releasably hold the reticle. The electrostatic clamp includes a first substrate having opposing first and second surfaces, a plurality of burls located on the first surface and configured to contact the reticle, a second substrate having opposing first and second surfaces. The first surface of the second substrate is coupled to the second surface of the first substrate. A plurality of cooling elements are located between the first surface of the second substrate and the second surface of the first substrate. The cooling elements are configured to cause electrons to travel from the second surface of the first substrate to the first surface of the second substrate. Each cooling element is substantially aligned with a respective burl.
Abstract:
A support apparatus for a lithographic apparatus has an object holder and an extraction body radially outward of the object holder. The object holder is configured to support an object. The extraction body includes an extraction opening configured to extract fluid from a top surface of the support apparatus. The extraction body is spaced from the object holder such that the extraction body is substantially decoupled from the object holder. The extraction body comprises a projection configured such that it surrounds the object holder and such that, in use, a layer of liquid is retained on the projection and in contact with an object supported on the object holder.
Abstract:
A movable stage system is configured to support an object. The stage system comprises an object table configured to support the object and an object table support defining an object table support surface configured to support the object table. The object table support comprises at least one first actuator to drive the object table support in a first driving direction substantially parallel to the object table support surface. In a projection on a plane parallel to the object table support surface the at least one actuator is spaced with respect to the object table in a direction perpendicular to the first driving direction such that the risk on slip between the object table support and the object table supported thereon is decreased.
Abstract:
A support apparatus for a lithographic apparatus has an object holder and an extraction body radially outward of the object holder. The object holder is configured to support an object. The extraction body includes an extraction opening configured to extract fluid from a top surface of the support apparatus. The extraction body is spaced from the object holder such that the extraction body is substantially decoupled from the object holder. The extraction body comprises a projection configured such that it surrounds the object holder and such that, in use, a layer of liquid is retained on the projection and in contact with an object supported on the object holder.