Abstract:
In one embodiment, a system includes a memory that includes a live section and a spares section. The live section may be mapped to the address space of the system, and may be accessed in response to memory operations. Once an entry in the live section has been detected as failed, an entry is in the spares section may be allocated to replace the failed entry. During subsequent accesses to the failed entry, the allocated entry may be used instead. In an embodiment, the failed entry may be coded with an indication of the allocated entry, to redirect to the allocated entry. In one implementation, for example, the failed entry may be coded with N copies of a pointer to the allocated entry, each copy protected by corresponding ECC.
Abstract:
In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
Abstract:
A transaction filter for an on-chip communications network is disclosed. In one embodiment, an integrated circuit (IC) include a number of functional circuit blocks, some of which may be placed in a sleep mode (e.g., power-gated). The IC also includes a number of transaction filters that are each associated with a unique one of the functional circuit blocks. Responsive to its associated functional circuit block generating a transaction, a given transaction filter may determine whether the functional circuit block to which the transaction is destined is in a sleep mode. If it is determined that the transaction is destined for a functional circuit block that is currently in the sleep mode, the transaction filter may block the transaction from being conveyed.
Abstract:
A method and apparatus for providing telemetry for use in power control functions is disclosed. A system includes an integrated circuit (IC) having a first power management circuit. The IC also includes a number of functional circuit blocks within a number of different power domains. A second power management circuit is implemented external to the IC and includes a number of voltage regulators. Each of the power domains is coupled to receive power from one voltage regulators. During operation, the first power management circuit may send commands requesting the change of one or more voltages provided to the IC. The second power management circuit may respond by performing the requested voltage change(s), and may also provide telemetry data to the first power management circuit. The second power management circuit may also provide telemetry data responsive to receiving a no operation command from the first power management circuit.
Abstract:
Systems, processors, and methods for sharing an agent's private cache with other agents within a SoC. Many agents in the SoC have a private cache in addition to the shared caches and memory of the SoC. If an agent's processor is shut down or operating at less than full capacity, the agent's private cache can be shared with other agents. When a requesting agent generates a memory request and the memory request misses in the memory cache, the memory cache can allocate the memory request in a separate agent's cache rather than allocating the memory request in the memory cache.
Abstract:
A method and apparatus for parameter-based sensor selection is disclosed. In one embodiment, a system includes an integrated circuit (IC) having a first power management circuit, and a second power management circuit external to the IC. The IC includes various functional units implemented in various power domains, while the second power management circuit (which may be implemented on an IC) includes a number of voltage regulators for providing power to the power domains. The second power management circuit also includes sensors that provide data about a system parameter, with the data being provided at telemetry to the first power management circuit. When the system parameter is less than a first threshold, the telemetry data may be based on a first sensor. When the system parameter is greater than the first threshold, the telemetry data may be based on a second sensor.
Abstract:
In an embodiment, a system includes a memory controller that includes a memory cache and a display controller configured to control a display. The system may be configured to detect that the images being displayed are essentially static, and may be configured to cause the display controller to request allocation in the memory cache for source frame buffer data. In some embodiments, the system may also alter power management configuration in the memory cache to prevent the memory cache from shutting down or reducing its effective size during the idle screen case, so that the frame buffer data may remain cached. During times that the display is dynamically changing, the frame buffer data may not be cached in the memory cache and the power management configuration may permit the shutting down/size reduction in the memory cache.
Abstract:
A method for managing power in a system, in which the system may include a first device configured to transmit serial data and a second device, coupled to the first device. The second device may include a transceiver and interrupt logic, and may be configured to activate the interrupt logic and enable a reduced power mode for the transceiver. Power consumption of the transceiver operating in the reduced power mode may be less than power consumption of the transceiver in an operating mode. The second device may also be configured to assert an interrupt signal responsive to a change in a voltage level of an input of the second device and then de-activate the reduced power mode for the transceiver responsive to the assertion of the interrupt signal.
Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
Abstract:
A system and method for maintaining accurate interrupt timestamps. A semiconductor chip includes an interrupt controller (IC) with an interface to multiple sources of interrupts. In response to receiving an interrupt, the IC copies and records the value stored in a main time base counter used for maintaining a global elapsed time. The IC sends an indication of the interrupt to a corresponding processor. Either an interrupt service routine (ISR) or a device driver requests a timestamp associated with the interrupt. Rather than send a request to the operating system to obtain a current value stored in the main time base counter, the processor requests the recorded timestamp from the IC. The IC identifies the stored timestamp associated with the interrupt and returns it to the processor.