Abstract:
Systems and methods for performing damping analyses on a device are disclosed. The damping analyses may be used by a device in numerous ways. For example, in some embodiments, damping analyses are used to determine whether a device is being worn or held by a user. In some embodiments, damping analyses are used to determine which user of multiple users is wearing a device. In some embodiments, damping analyses are used to determine the body composition of a user who is holding or wearing the device. In some embodiments, damping analyses are used to determine how much force a user is applying to a device via a touch input. In some embodiments, damping analyses are used to determine whether and to what extent a sensor is in contact with a body of a user.
Abstract:
A method of manufacturing a co-molded housing component for an electronic device is disclosed. A component formed from a ceramic material is placed in a mold. The mold comprises a first section defining a first cavity configured to receive the first component, and a second section defining a second cavity that is in communication with the first cavity when the mold is closed. The second cavity is in the shape of a feature that is to be joined to the ceramic material. A polymer material is injected into the second cavity, thereby forming the feature from the polymer material and bonding the feature to the ceramic material. The polymer material is cured. The first component and the feature together form the housing component for an electronic device.
Abstract:
Systems and methods for dynamically adjusting the fit of a wearable electronic device are disclosed. In many embodiments, a tensioner associated with a wearable electronic device can control one or more actuators that are mechanically coupled to either the housing or to a band attached to the wearable electronic device. In one example, in response to a signal to increase the tightness of the band, the tensioner can cause the actuator(s) to increase the tension within the band.
Abstract:
Interlocking first member and optical members and methods of their manufacture. A component formed from an interlocking first member and optical member, where the first member includes a recess formed within a surface and the optical member is disposed in the recess. The recess of the first member may include a recess geometry and the optical member may include a member geometry that may correspond to the recess geometry. Additionally, the interlocking component formed from the first member and optical member may be formed by a coupling process. The coupling process may include sintering the first member and the optical member, bonding the optical member to the first member or providing a compression-load or fit between the first member and the optical member.
Abstract:
An electronic device includes one or more light emitters for emitting light toward an object and one or more light detectors for collecting light exiting the object. A reflective coating, surface, or surface finish can be applied adjacent to the area to which light is emitted and/or through which light exits in order to increase the light collected by the light detector. The reflective coating can be oriented so as to reflect light back into the object.
Abstract:
A ceramic part and methods for making the ceramic part are disclosed. A green body or non-sintered part may be formed using a casting or molding process. The green body may not be sintered or may be partially sintered before machining one or more features into a surface of the green body. After machining, the component may be fully sintered to create a hardened ceramic component.
Abstract:
An electronic device has a self-healing elastomer applied over one or more external electronic connectors. The self-healing elastomer may obscure the electronic connectors from the user as well as provide environmental protection for the connector and the electronic device. Electronic probes may temporarily penetrate the self-healing elastomer to mate with the electronic connector. After removal of the probes the self-healing elastomer may elastically reform and self-heal.
Abstract:
An auxiliary electronic device attachable to a wearable electronic device. The auxiliary device includes a housing, electronic circuitry within the housing, and an attachment mechanism configured to attach the auxiliary electronic device to the wearable device while the device is being worn by a user. In some embodiments the electronic circuitry includes a power transmitting unit that can wirelessly transmit power to charge a rechargeable battery within the wearable electronic device. In some embodiments the attachment mechanism includes a pair of lugs that extend, from opposite ends of the housing, above the housing towards a center of the auxiliary device and are adapted to fit within corresponding recesses of the wearable electronic device.
Abstract:
An electronic device includes one or more light emitters for emitting light toward an object and one or more light detectors for collecting light exiting the object. A reflective coating, surface, or surface finish can be applied adjacent to the area to which light is emitted and/or through which light exits in order to increase the light collected by the light detector. The reflective coating can be oriented so as to reflect light back into the object.
Abstract:
A method for co-finishing surfaces bonds a first structure formed of a first material and having a first surface in an aperture defined in a second structure formed of a second material and having a second surface such that there is an offset between the first surface and the second surface. The first surface and the second surface are co-lapped to reduce the offset. The first surface and second surface are co-polished to further reduce the offset. The first surface and second surfaces may then be flush. Edges of the first surface may be chamfered to mitigate damage during co-lapping and/or co-polishing. Fill material may be positioned in gaps between the first and second structures to mitigate damage during co-lapping and/or co-polishing.