摘要:
A solid state image sensor with a plurality of cells comprising a photoelectric converting film formed on a semiconductor substrate for photoelectrically converting incoming light rays to generate signal charge, signal charge storage areas for storing said signal charge formed in said substrate, signal charge read out areas for reading out said signal charge from said storage area, conductor electrodes for making said photoelectric converting film electrically contact with said signal charge storage areas to lead said signal charge from said photoelectric converting film to said storage areas, and series of said conductor electrodes arranged along at least two or more row lines in a matrix of said conductor electrodes being displayed in the row direction by 1/2 of the length of one electrode one from the other as viewed in the column direction.
摘要:
Photosensitive cells each includes a photodiode (1), a transfer gate (2), a floating diffusion layer portion (3), an amplifying transistor (4), and a reset transistor (5). Drains of the amplifying transistors (4) of the photosensitive cells are connected to a power supply line (10), and a pulsed power supply voltage (VddC) is applied to the power supply line (10). Here, a low-level potential (VddC_L) of the power supply voltage has a predetermined potential higher than zero potential. Specifically, by making the low-level potential (VddC_L) higher than channel potentials obtained when a low level is applied to the reset transistors (5), or channel potentials obtained when a low level is applied to the transfer gates (2), or channel potentials of the photodiodes (1), a reproduced image with low noise is read.
摘要:
An imaging device outputs brightness information according to an amount of incident light and includes: an imaging unit that includes a plurality of unit cells arranged one dimensionally or two-dimensionally, each unit cell including a photoelectric conversion part that generates a first output voltage in a reset state and a second output voltage according to an amount of incident light, and each unit cell generating a reset voltage that corresponds to the first output voltage and a read voltage that corresponds to the second output voltage; and an output unit operable to output, in relation to each unit cell, brightness information indicating a difference between the reset voltage and the read voltage when normal light is incident to the imaging device and the read voltage is in a predetermined range, and brightness information indicating high brightness when strong light is incident to the imaging device and the read voltage is not in the predetermined range.
摘要:
An electrolytic capacitor includes: a case including a case body, in which an electrolytic capacitor element is disposed in a sealed manner and filled up with an electrolytic solution, and a safety valve is mounted to the case body for jetting an evaporated gas of the electrolytic solution filling the electrolytic capacitor element; a cover member mounted to the case so as to cover the safety valve provided for the case; a first fixing unit mounted to the cover member so as to prevent the cover member from dismounting when the evaporated gas of the electrolytic solution is jetted outward; and a second fixing unit disposed in association with the first fixing unit and adopted to reinforce and assist a function of the first fixing unit to thereby prevent the cover member from being dismounted. An electric equipment includes a lighting circuit including circuit components, and an electrolytic capacitor of the structure mentioned above.
摘要:
A high dynamic range solid-state image pickup device is provided with a plurality of unit cells, which convert light into signal charges and accumulate the signal charges. The unit cells are arranged by rows and columns for outputting a signal voltage corresponding to the signal charges. A selector and a read transistor set an accumulation time period for accumulating the signal charges in the unit cells to a first period and a second period different from each other. The row selector and a vertical selection transistor select a row. Sampling capacitors (210a, 210b) are connected to the unit cell of each column. A pulse generator and sampling transistors select an arbitrary sampling capacitor from the sampling capacitors. The pulse generator and the sampling transistors perform selection so as to accumulate the signal voltage corresponding to the signal charges accumulated during the first period and the second period in the sampling capacitors, respectively.
摘要:
In each photosensitive cell, a photodiode 101, a transfer gate 102, a floating diffusion layer section 103, an amplifier transistor 104, and a reset transistor 105 are formed in one active region surrounded by a device isolation region. The floating diffusion layer section 103 included in one photosensitive cell is connected not to the amplifier transistor 104 included in that cell but to the gate of the amplifier transistor 104 included in another photosensitive cell adjacent to the one photosensitive cell in the column direction. A polysilicon wire 111 connects the transfer gates 102 arranged in the same row, and a polysilicon wire 112 connects the reset transistors 105 arranged in the same row. For connection in the row direction, only polysilicon wires are used.
摘要:
An imaging device includes a plurality of pixels each configured to convert incident light to an electric charge signal and output the electric charge signal as a pixel signal, and a pixel binning unit configured to bin pixel signals from pixels adjacent to each other and output the binned pixel signal. The pixel binning unit performs first pixel binning operation of binning pixel signals from pixels on the same column and second pixel binning operation of binning pixels on the same row.
摘要:
In each photosensitive cell, a photodiode 101, a transfer gate 102, a floating diffusion layer section 103, an amplifier transistor 104, and a reset transistor 105 are formed in one active region surrounded by a device isolation region. The floating diffusion layer section 103 included in one photosensitive cell is connected not to the amplifier transistor 104 included in that cell but to the gate of the amplifier transistor 104 included in another photosensitive cell adjacent to the one photosensitive cell in the column direction. A polysilicon wire 111 connects the transfer gates 102 arranged in the same row, and a polysilicon wire 112 connects the reset transistors 105 arranged in the same row. For connection in the row direction, only polysilicon wires are used.
摘要:
A solid state image pickup device 110 is provided with: a plurality of pixel units 10 that are arranged two-dimensionally and include a photoelectric conversion unit (photodiode PD) that converts light into a charge and an amplification unit (amplifier Q13) that converts the charge into a voltage and outputs it; a plurality of noise signal removal units (noise cancellation units 40) that are provided one for each column and remove noises contained in the voltage outputted from the amplifier Q31 of the pixel unit 10 belonging to the column; and a plurality of column amplification units (column amplifiers 70) that amplify the voltage outputted from the amplifier Q13 of the pixel unit 10 and output the amplified voltage to the noise cancellation unit 40, and enables increase in sensitivity and reduction in noise with low power consumption.
摘要:
An object of the present invention is to provide a shift register in which it is prevented from malfunctioning because of a portion between a first transistor and a second transistor being in a high-impedance state. The shift register of the present invention includes capacitor means 5 for storing data outputted from a unit circuit 1 of the preceding block. A first transistor 3 is turned ON only when data is being stored in the capacitor means 5. A second transistor 7 includes a control electrode and an input-side diffusion layer connected to the output-side diffusion layer of the first transistor 3, and is turned ON only when a pulse of a clock signal from the first transistor 3 is inputted to the control electrode and the input-side diffusion layer. Potential controlling means 2 keeps the second transistor 7 OFF at least during a period in which the second transistor 7 is supposed to be OFF.