Abstract:
A silicide layer (first silicide layer, second silicide layer) is laminated on top laminate surfaces of gates of a transmission transistor and a reset transistor, respectively. Each of the first silicide layer and the second silicide layer respectively formed on each of the gates extends in a direction along the main surface of the semiconductor substrate among at least a portion of a plurality of image pixels, connecting gates with one another among the respective image pixels. On the other hand, a signal outputter is not in contact with any silicide layers, has the top laminate surface that is covered with an insulating layer, and is connected with other transistors via a metal wiring layer.
Abstract:
An inversion layer is formed in a part as a boundary between (a) a defect control layer formed along a trench surface for isolating pixel calls and (b) a photo diode. The defect control layer is a P-type, and the photo diode and the inversion layer are N-type. Here, an impurity concentration in the inversion layer is at least twice as high as an impurity concentration in the photo diode.
Abstract:
A solid-state imaging device includes a first wiring layer, a second wiring layer, a substrate contact, and a first contact. The arrangement of the substrate contact with respect to a light-receiving section forming a peripheral pixel is shifted, or not shifted, from the arrangement of the substrate contact with respect to a light-receiving section forming a central pixel, by a shift amount r from the peripheral portion toward the central portion. The arrangement of the first contact with respect to the light-receiving section of the peripheral pixel is shifted from the arrangement of the first contact with respect to the light-receiving section of the central pixel, by a shift amount s1 from the peripheral portion toward the central portion. The shift amount s1 is greater than the shift amount r.
Abstract:
A solid-state imaging device according to the present invention includes a semiconductor substrate; a light-receiving element formed in the semiconductor substrate and photoelectrically converting incident light; and a plurality of wiring layers stacked on top of each other on a surface of the semiconductor substrate where the light-receiving element is formed. At least one of the plurality of wiring layers includes: a first insulating layer; metal wiring formed on the first insulating layer; an antireflection layer stacked on the first insulating layer and the metal wiring, preventing diffusion of a material making up of the metal wiring, and preventing reflection of the incident light; and a second insulating layer stacked on the antireflection layer.
Abstract:
A solid state imaging device includes an imaging area where a plurality of first pixels and a plurality of second pixels are respectively arranged in the form of a matrix, each of the first pixels and the second pixels having a photoelectric conversion portion and outputting a signal in accordance with brightness of incident light when selected; a plurality of first memories that respectively store signals of selected first pixels out of the plurality of first pixels; and a plurality of second memories that are respectively connected in parallel to the first memories and respectively store signals of selected second pixels out of the plurality of second pixels. The signals stored in the first memories and in the second memories are successively read to a horizontal signal line.
Abstract:
A photo chemical reaction apparatus comprises a vacuum container partitioned into a reaction chamber and a carrier chamber by use of partition board. The partition board has an opening into which a carrier tray can be detachably inserted so as to cause the rection chamber to be hermetically sealed. The carrier tray has a substrate holder opposite to a light-penetrating window. A reaction gas flows between this window and a substrate to be processed mounted on the substrate holder.
Abstract:
A solid-state imaging element includes a photodiode formed in an upper portion of a semiconductor substrate to perform a photoelectric conversion, a silicon dioxide film formed on the substrate to cover the photodiode, and a silicon nitride film formed on the silicon dioxide film. The silicon nitride film has a thinner portion smaller in thickness than at least an end portion of the silicon nitride film entirely or partly over the photodiode.
Abstract:
In a solid-state image pickup device, it is difficult to match an optimum incidence angle corresponding to an image height of a pixel array region with light incidence characteristics of a camera lens, thereby causing image quality deterioration due to sensitivity shading. Respective microlenses are disposed in a two-dimensional manner, i.e., in a row and a column directions. In particular, the microlenses are disposed such that each side of a disposition region where the microlenses are disposed has a concave curve with respect to a line connecting adjacent vertexes of the disposition region. In other words, a distance AH (AV) between center points of a pair of facing sides of the disposition region is set to be smaller than a distance BH (BV) between neighboring vertexes of the disposition region.
Abstract:
Provided is a solid-state imaging device including unit pixels, wherein the unit pixels include two kinds of unit pixels including a first unit pixel and a second unit pixel that are formed on a common well on a semiconductor substrate. The first unit pixel includes: at least one photoelectric conversion region which converts light into a signal charge; the first semiconductor region that is formed on the common well and has a conductivity type identical to that of the common well; and the first contact electrically connected to the first semiconductor region. The second unit pixel includes: at least one photoelectric conversion region; the second semiconductor region that is formed on the common well and has a conductivity type opposite to that of the common well; and the second contact electrically connected to the second semiconductor region.
Abstract:
A solid-state image sensor includes: a trench isolation region; a photodiode region for converting incident light to signal charges and accumulating the signal charges therein; a floating diffusion region for accumulating the signal charges of the photodiode region; a gate electrode formed over the element formation region located between the photodiode region and the floating diffusion region, and formed so that both ends of the gate electrode respectively overlap a part of the photodiode region and a part of the floating diffusion region; and an inactive layer formed in a region located in a bottom portion and sidewall portions of the trench isolation region. An impurity concentration in a region located under the gate electrode in the inactive layer is lower than that in a region other than the region located under the gate electrode in the inactive layer.