Abstract:
According to one embodiment, a magnetic recording element includes a stacked body. The stacked body includes a first and a second stacked unit. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit is stacked with the first stacked unit and includes third and fourth ferromagnetic layers and a second nonmagnetic layer. The fourth ferromagnetic layer is stacked with the third ferromagnetic layer. The second nonmagnetic layer is provided between the third and fourth ferromagnetic layers. An outer edge of the fourth ferromagnetic layer includes a portion outside an outer edge of the first stacked unit in a plane. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a rotating magnetic field to act on the second ferromagnetic layer.
Abstract:
According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
Abstract:
According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
Abstract:
The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
Abstract:
The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
Abstract:
The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
Abstract:
A method of fabricating a magnetic memory according to an embodiment includes: forming a separation layer on a first substrate; sequentially forming a first ferromagnetic layer, a first nonmagnetic layer, and a second ferromagnetic layer on the separation layer, at least one of the first and the second ferromagnetic layers having a single crystal structure; forming a first conductive bonding layer on the second ferromagnetic layer; forming a second conductive bonding layer on a second substrate, on which a transistor and a wiring are formed, the second conductive bonding layer electrically connecting to the transistor; arranging the first and second substrate so that the first conductive bonding layer and the second conductive bonding layer are opposed to each other, and bonding the first and the second conductive bonding layers to each other; and separating the first substrate from the first ferromagnetic layer by using the separation layer.
Abstract:
According to one embodiment, a magnetoresistive element includes an electrode layer, a first magnetic layer, a second magnetic layer and a nonmagnetic layer. The electrode layer includes a metal layer including at least one of Mo, Nb, and W. The first magnetic layer is disposed on the metal layer to be in contact with the metal layer and has a magnetization easy axis in a direction perpendicular to a film plane and is variable in magnetization direction. The second magnetic layer is disposed on the first magnetic layer and has a magnetization easy axis in the direction perpendicular to the film plane and is invariable in magnetization direction. The nonmagnetic layer is provided between the first and second magnetic layers. The magnetization direction of the first magnetic layer is varied by a current that runs through the first magnetic layer, the nonmagnetic layer, and the second magnetic layer.
Abstract:
According to one embodiment, a magnetic memory element includes a first magnetic layer having a first surface and a second surface being opposite to the first surface, a second magnetic layer, an intermediate layer which is provided between the first surface of the first magnetic layer and the second magnetic layer, a layer which is provided on the second surface of the first magnetic layer, the layer containing B and at least one element selected from Hf, Al, and Mg, and an insulating layer which is provided on a sidewall of the intermediate layer, the insulating layer containing at least one element selected from the Hf, Al, and Mg contained in the layer.
Abstract:
A magnetoresistive element according to an embodiment includes: a first ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a second ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a nonmagnetic layer placed between the first ferromagnetic layer and the second ferromagnetic layer; a first interfacial magnetic layer placed between the first ferromagnetic layer and the nonmagnetic layer; and a second interfacial magnetic layer placed between the second ferromagnetic layer and the nonmagnetic layer. The first interfacial magnetic layer includes a first interfacial magnetic film, a second interfacial magnetic film placed between the first interfacial magnetic film and the nonmagnetic layer and having a different composition from that of the first interfacial magnetic film, and a first nonmagnetic film placed between the first interfacial magnetic film and the second interfacial magnetic film.