摘要:
An automated system, and method of operating the same, for interactively routing interconnections in a layout of an integrated circuit. Interconnections among subchips in the integrated circuit, specified by a netlist, are displayed by the system by way of airlines. The system provides a symbolic view of the bus, showing a representative wire of the bus, such as that associated with the least-significant or most-significant bit position in the bus. The physical routing of the representative wire is interactively defined, using orthogonal wire segments in selected conductor levels. Bus properties, for example including bit pitch, wire pitch, LSB/MSB, and a direction of expansion, are associated with the routing data for each segment of the representative wire. The combination of the routing data and the bus property data enable building of the entire bus from the interactive routing of the representative wire in the symbolic view.
摘要:
A system comprises a plurality of requesting agents and granting agents configured in an array of rows and a plurality of columns. Corresponding to each requesting agent is a plurality of row address decoders and column address decoders, one row decoder for each row of granting agents and one column decoder for each column of granting agents. Each row decoder receives a first subset of an address' bits from a requesting agent and generates a row output bit provided to each granting agent in the row of that row address decoder. Each column decoder receives a second subset of bits of the address and generates a column output bit provided to each granting agent in the column corresponding to such column decoder. Each granting agent logically combines the row and column output bits from row and column decoders of a requesting agent to generate a request signal for the granting agent.
摘要:
An electronic system (2001) for manipulating an input data argument (D[31:0]) comprising an integer number of bits. The system comprises an input (R) for receiving a right direction argument and an input (L) for receiving a left direction argument. The system also comprises circuitry (200) for producing a first data output having the integer number of bits by rotating the input data argument in response to the first direction argument and the second direction argument. The system also comprises circuitry for providing a modified data output (502). The circuitry for providing comprises circuitry for selecting a first set of bits from the first data output as a first portion of the modified data output and circuitry for providing a second set of bits from a source other than the first data output as a second portion of the modified data output.
摘要:
A data switching circuit (10). The data switching circuit comprises at least one input (10in) for receiving during a same time period a plurality of data streams (ICH0-ICH127). Each of the data streams comprises a plurality of like-sized data quantities. The data switching circuit further comprises a plurality of addressable memories (10x), wherein each of the plurality of addressable memories comprises a plurality of memory cells. The data switching circuit further comprises circuitry (11) for writing into each of the plurality of addressable memories a copy of a same set of data quantities provided by the data streams during a first period of time. Lastly, the data switching circuit further comprises reading circuitry (13, 14), coupled to each respective one of the plurality of addressable memories, for reading during a second period of time a number of data quantities from the respective addressable memory and outputting the read data quantities to output channels.
摘要:
A dynamic logic circuit (30). The dynamic logic circuit comprises a precharge node (30PN) to be precharged to a precharge voltage (VDD) during a precharge phase and a conditional discharge path (30L, 30DT) connected to the precharge node. The conditional discharge path is operable, during an evaluate phase, to conditionally couple the precharge node to a voltage different than the precharge voltage. The dynamic logic circuit also comprises an output (OUT3) for providing a signal in response to a state at the precharge node. Lastly, the dynamic logic circuit comprises voltage maintaining circuitry (30KT1, 30KT2), coupled to the output, for coupling the precharge voltage to the precharge node during a portion of an instance of the evaluate phase when the conditional discharge path is not enabled during the instance of the evaluate phase.
摘要:
A method for generating charge sharing test vectors for a circuit generates a first test vector (120) and a second test vector (122). The method provides a test model (98) including a logic cell (10) and an auxiliary test circuit (100) where the auxiliary test circuit (100) includes a discharge AND gate (102) and a charge sharing AND gate (104). The method generates a first test vector (120) for the test model (98) having an input pattern to discharge nodes of the logic cell (10) and evaluate discharge AND gate (102) to a logic level 1. The method generates a second test vector (122) having an input pattern to evoke the worst charge sharing behavior for the logic cell (10) and evaluate charge sharing AND gate (104) to a logic level 1.
摘要:
An integrated circuit (SAI0) comprises a first SOI transistor (T4) comprising a plurality of nodes, the plurality of nodes comprising a first source/drain, a second source/drain, a gate for receiving a potential to enable a conductive path between the first source/drain and the second source/drain, and a body terminal coupled to a body region disposed between the first source/drain and the second source/drain. The integrated circuit further includes a second SOI transistor (T5) comprising a plurality of nodes, the plurality of nodes comprising a first source/drain, a second source/drain, a gate for receiving a potential to enable a conductive path between the first source/drain and the second source/drain, and a body terminal coupled to a body region disposed between the first source/drain and the second source/drain. In the integrated circuit, one of the plurality of nodes of the first SOI transistor is connected to receive a first differential input signal. Moreover, a same one of the plurality of nodes of the second SOI transistor is connected to receive a second differential input signal. Lastly, the body of the first SOI transistor is connected to the body of the second SOI transistor and the bodies of the first and second SOI transistors are connected to float.
摘要:
In a preferred logic circuit embodiment (10), there is a precharge node (14) coupled to be precharged to a precharge voltage (V.sub.DD) during a precharge phase and operable to be discharged during an evaluate phase. The circuit also includes a conditional series discharge path (22, 24, and 16) connected to the precharge node and operable to couple the precharge node to a voltage different than the precharge voltage. The conditional series discharge path includes a low threshold voltage transistor (22 or 24) having a first threshold voltage, and a high threshold voltage transistor (16) having a second threshold voltage higher in magnitude than the first threshold voltage, wherein a voltage connected to a gate of the high threshold voltage transistor is disabling during the precharge phase.
摘要:
A processor embodiment comprises a microprogram memory circuit (12) comprising a number of separately energizable banks (14a, 14b). Each of the number of separately energizable banks is operable to concurrently output at least one microinstruction. The processor further comprises circuitry for forming a microaddress for addressing the microprogram memory. This circuitry includes circuitry (26, 28) for identifying a value of a first bit (A0) and of a second bit (A1), and the microaddress comprises the first bit, the second bit, and a plurality of main bits (20c). Further, the processor includes circuitry for selectively energizing (24, 13a, 13b) a subset of the separately energizable banks in response to the value of the first bit, and the subset is less than the number of separately energizable banks. Still further, the processor includes circuitry (16) for outputting a first set of microinstructions from the subset of the separately energizable banks. Lastly, the processor includes circuitry (18) for selecting a subset of the first set of microinstructions in response to the value of the second bit, wherein the subset is less than the number of the first set of microinstructions.
摘要:
A memory management system for use with a logic simulator 10 for storing data in each memory that is being simulated by the logic simulator 10. The system includes memory control logic 14 coupled to a physical memory 16 which is segmented into a permanent storage area P (26), a temporary storage area T1 (24) and a second temporary storage area T2 (22). Each write request from the simulator causes memory control logic 14 to store the latest request into the T2 area (22). Prior data stored in T2 (22) are first moved to the T1 (24) or P (26) storage area where other store requests for the same and other simulated locations were stored during the same simulator time interval. In this fashion, a history of simulator write activity is stored in physical memory 16 and available for rerunning or restarting the simulator 10 at or near a prior simulator cycle.