摘要:
Methods and compositions are provided for detection of analytes, such as cell surface moieties, preferably in multiplexed assays, such that multiple analytes can be assayed simultaneously. The methods employ analyte binding agents which are linked to oligonucleotide labels, which labels are then used for formation of cleavage structures and generation of detectable molecular tags. Preferably, multiple tags are generated per analyte binding event.
摘要:
A shield device for preventing the emission of electromagnetic interference (“EMI”) from an optoelectronic device, such as an optical transceiver, is disclosed. In particular, an EMI shield is disclosed for placement within an optical transceiver module in order to intercept and absorb EMI produced by electronic components included within the transceiver. This absorption by the EMI shield prevents EMI from escaping the optical transceiver module and interfering with other electronic components that are typically placed in close proximity to the transceiver. The EMI shield in one embodiment includes a sheet of EMI absorbing material that is sized for placement within the transceiver. The EMI shield can be interposed between an outer shell of the transceiver and electronic components located on a printed circuit board that is disposed within the transceiver. The proximity of the EMI shield to the EMI-producing electronic components maximizes EMI absorption by the shield.
摘要:
The present invention relates to antibodies (including anti-B7-H4 antibodies) and their antigen-binding fragments and to other molecules (including fusion proteins that bind to the cognate antigen/receptor, etc.) that are capable of immunospecifically binding to B7-H4 and the uses of such molecules in the diagnosis and the treatment of cancer and other diseases. The invention particularly concerns the use of such molecules to retard or prevent tumor growth, inhibit tumor-mediated suppression, eliminate tumors and/or deplete or block the activity of tumor associated macrophages (“TAMs”) so as to alter their activity and/or decrease TAM—mediated immune suppression.
摘要:
Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
摘要:
Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
摘要:
The present invention provides methods and compositions for electroporation-mediated gene transfer to cancer cells. The transfected cancer cells are genetically modified to express one or more therapeutic proteins. In certain embodiments, the cancer cells are modified to express one or more cytokines capable of enhancing the immunogenicity of the transfected cancer cell. Administering the transfected cancer cell to a subject will lead to enhanced immune-cell mediated killing of tumors. Accordingly, the present invention provides methods and compositions for improved treatment and prevention of cancer and other hyperproliferative diseases.
摘要:
The present invention relates to methods and apparatus for the encapsulation of biologically-active substances in various cell populations. More particularly, the present invention relates to a method and apparatus for the encapsulation of biologically-active substances in various cell populations in blood by electroporation to achieve therapeutically desirable changes in the physical characteristics of the various cell populations in blood.
摘要:
The present invention is directed to providing an electrostatic discharge ("ESD") protection cell for use in an integrated circuit device including antifuses. The ESD protection cell is formed simultaneously with the antifuses that it protects and provides protection from ESD during the fabrication of the antifuses. The concept is to use thin undoped or doped polysilicon on top of antifuse material as a block etching mask for the formation of the ESD protection cells by using common etching techniques. This polysilicon mask is placed where the antifuses will be and not where the ESD protection cells will be. The polysilicon mask is then merged with a top polysilicon electrode during later processing. During the block etching process, the antifuse material layer is compromised in the region about the ESD protection cells. Where the antifuse material layer is an O--N--O sandwich, the top oxide and nitride layers may be etching during the block etching process leaving the thin bottom oxide layer and some or no residual bottom oxide of the ONO composite antifuse material layer for forming the ESD protection cell. Since etching into the bottom oxide of the ONO composite antifuse material layer will not degrade, but will enhance the ESD protection capability of the ESD protection cell, it is perfectly acceptable to also etch the bottom oxide layer as well as long as proper process control is allowed. The ESD protection cell may be used with antifuses having diffusion or polysilicon type bottom electrodes and polysilicon top electrodes. An advantage of this structure is its ability to be fabricated at high temperature for improved film characteristics and reliability.
摘要:
The present invention is directed to providing an electrostatic discharge ("ESD") protection cell for use in an integrated circuit device including antifuses. The ESD protection cell is formed simultaneously with the antifuses that it protects and provides protection from ESD during the fabrication of the antifuses. The concept is to use thin undoped or doped polysilicon on top of antifuse material as a block etching mask for the formation of the ESD protection cells by using common etching techniques. This polysilicon mask is placed where the antifuses will be and not where the ESD protection cells will be. The polysilicon mask is then merged with a top polysilicon electrode during later processing. During the block etching process, the antifuse material layer is compromised in the region about the ESD protection cells. Where the antifuse material layer is an O--N--O sandwich, the top oxide and nitride layers may be etching during the block etching process leaving the thin bottom oxide layer and some or no residual bottom oxide of the ONO composite antifuse material layer for forming the ESD protection cell. Since etching into the bottom oxide of the ONO composite antifuse material layer will not degrade, but will enhance the ESD protection capability of the ESD protection cell, it is perfectly acceptable to also etch the bottom oxide layer as well as long as proper process control is allowed. The ESD protection cell may be used with antifuses having diffusion or polysilicon type bottom electrodes and polysilicon top electrodes. An advantage of this structure is its ability to be fabricated at high temperature for improved film characteristics and reliability.