Abstract:
Techniques for configuring a Home evolved Node B (HeNB) in a location server and positioning the HeNB are disclosed. In one aspect, location for a HeNB is supported based on LTE Positioning Protocol (LPP) messages. The HeNB communicates LPP messages with a location server. These LPP messages are terminated at the HeNB instead of a UE. At least one location transaction for the HeNB can be performed to configure in the location server and/or locate the HeNB based on the LPP messages. In another aspect, location for a HeNB is supported based on an embedded UE in the HeNB. The HeNB establishes a location session with a location server based on an embedded UE ID, which is assigned to the HeNB and recognized by the location server as being for a HeNB instead of a UE. At least one location transaction for the HeNB is performed during the location session.
Abstract:
Techniques are provided for positioning of a mobile device in a wireless network using directional positioning reference signals (PRS), also referred to as PRS beamforming. In an example method, a plurality of directional PRSs are generated for at least one cell for a base station, such that each of the plurality of directional PRSs comprises at least one signal characteristic and a direction of transmission, either or both of which may be distinct or unique. The plurality of directional PRSs is transmitted within the at least one cell, such that each of the plurality of directional PRSs is transmitted in the direction of transmission. A mobile device may acquire and measure at least one of the directional PRSs which may be identified using the associated signal characteristic. The measurement may be used to assist position methods such as OTDOA and ECID and to mitigate multipath.
Abstract:
Accurate and reliable time is acquired by a user equipment (UE) from a base station in a wireless network. The base station may obtain the time, e.g., UTC time or a GNSS time, and ciphers at least a portion of the time before broadcasting the time. The UE determines a propagation delay between the UE and the base station based on a timing advance, known locations of the UE and the base station, or a measured round trip propagation time (RTT) between the UE and the base station. A corrected time can be determined based on the time received from the base station and the propagation delay. A digital signature included with the time broadcast by the base station increases reliability. Spoofing of the broadcast time by an attacking device may be detected by the UE based on the propagation delay being outside an expected range.
Abstract:
A user equipment (UE) may access a public land mobile network (PLMN) via a communication satellite. The UE may receive satellite coverage data from the serving PLMN via the communication satellite indicating at which locations and/or at which times satellite coverage is available. The UE may determine, based on the satellite coverage data, a first time of satellite unavailability for a location of the UE and a second time of satellite availability. The UE may enter a no coverage state following the first time. The UE may inhibit mobile originating requests and/or reduce a frequency of satellite cell searching while in the no coverage state. The UE may leave the no coverage state at the second time. The satellite coverage data may comprise a coverage map for a grid of locations. Extra coverage data may be provided for satellite availability for other PLMNs and/or for terrestrial cells.
Abstract:
Techniques are provided for transmitting Positioning Reference Signals (PRSs) in cells supporting two different Radio Access Technologies (RATs), where the two RATs (e.g. 4G LTE and 5G NR) employ dynamic spectrum sharing. To avoid interference between the PRSs and between the two RATs, the PRSs may be time aligned to the same set of PRS positioning occasions, and may be assigned orthogonal characteristics such as different muting patterns, orthogonal code sequences, different frequency shifts or different frequency hopping. UEs supporting both RATs may be enabled to measure PRSs for both RATs. UEs supporting only one RAT (e.g. 4G LTE) may be enabled to measure PRSs for just this RAT. A location server such as an LMF, E-SMLC or SLP may provide assistance data to UEs, and request measurements from UEs, for PRSs in one or both RATs.
Abstract:
Disclosed are techniques for wireless communication using satellite access to a wireless network, where a wireless cell supported by a satellite is moving or temporarily fixed. In an aspect, a radio access network (RAN) entity or a user equipment (UE) provides, to a core network entity, an enhanced cell global identifier (CGI), where the enhanced CGI includes at least one field representing a location of the UE. Based on the enhanced CGI, the core network entity determines a location of the UE, and may provide a service to the UE based on the location. A core network may also provide an enhanced CGI to a RAN, e.g., to support wireless emergency alerting to UEs.
Abstract:
Methods and techniques are described for reducing end-to-end latency in a location determination of a user equipment (UE). Location requests from an external client for a UE may be supported using control plane signaling and may be performed only once or infrequently. Location reports to the external client may be supported with user plane signaling to minimize delay. A controlling entity for location of the UE may be part of a Radio Access Network (RAN) to further reduce delay and may be changed to a new controlling entity in the RAN and/or may reconfigure location measurements for the UE when the UE moves to a new serving cell or new serving base station.
Abstract:
Satellite access to a PLMN with a Fifth Generation (5G) core network (5GCN) is supported by a serving satellite NodeB (gNB). The gNB determines or verifies the country in which a user equipment (UE) is located to ensure that the UE is located in the same country as the PLMN. The gNB may determine the country of the UE based on UE measurements from broadcast satellite signals and a positioning ID (PID) broadcast for each radio cell. The PID frequently changes to prevent spoofing. The gNB may use multiple UE measurements from a moving radio cell over a period of time to generate a more accurate location for the UE. The gNB may indicate to a 5GCN whether the country of the UE has been verified. The 5GCN will determine the location and country of the UE if the gNB indicates that the country is not fully verified.
Abstract:
A communication system including a UE, a base station, and a PLMN is disclosed. The UE may access a radio cell supported by a communication satellite. The UE may select a preferred PLMN for each of multiple potential geographic locations of the UE. The UE may transmit, to the base station via the radio cell and the communication satellite, an indication of the preferred PLMN for each of the multiple potential geographic locations of the UE. The base station may attempt to determine a current geographic location of the UE. The base station may determine a serving PLMN as the preferred PLMN for the current geographic location of the UE and may later determine a second PLMN if the current geographic location changes. The base station determination may not be visible to the UE which may reduce UE signaling and resource usage.
Abstract:
Access, mobility management and regulatory services are supported for satellite access to a Fifth Generation (5G) core network. A coverage area, e.g., country, region, multiple countries, and international areas, are divided into fixed virtual cells having well defined geographic boundaries and fixed tracking areas. Information for the virtual cells and/or tracking areas and associated with one or more public land mobile networks (PLMNs) may be provided to a user equipment (UE). The UE may obtain its position, e.g., using a satellite positioning system, and determine the serving virtual cell or tracking area in which it is located. The UE may perform registration with a serving core network in a serving PLMN associated with the serving virtual cell or tracking area. Regulatory services, such as emergency (EM) calls, lawful interception (LI), wireless emergency alerts (WEA) may be provided based on the serving virtual cell or tracking area.