Abstract:
Various aspects of the disclosure provide for apparatus, methods, and software, for enabling inter-node coordination between scheduling entities and subordinate entities for managing a modem processing pipeline. Pipelining is a proven technique for improving the utilization of hardware processing blocks without substantially increasing chip area. Accordingly, various aspects of the present disclosure provide for efficient processing pipelining at the modem of a wireless communication device, with a general aim to reduce communication latency even in a wide bandwidth network. In various examples, modem processing pipeline efficiency may be augmented by utilizing certain coordination signaling between the sender and the receiver of downlink transmissions, to make the sender aware of the receiver and the pipelining enhancement to be undertaken at the receiver. By virtue of this coordination, the best tradeoff for pipeline efficiency may be targeted, while still meeting a generally tight ACK turnaround requirement.
Abstract:
Method, systems, and devices are described for low latency, robust acknowledgement reporting in a wireless communication system. A receiving device may receive a transmission in the transmission time interval (TTI), the transmission may include one or a plurality of symbols. The receiving device may identify an uplink acknowledgement channel configuration based on the format of the TTI. The receiving device may send an acknowledgement message to the sending device on the uplink acknowledgement channel according to the uplink acknowledgement channel configuration.
Abstract:
A unified frame structure design includes multiple structures to support multiple access requirements. In some aspects, different access requirements may relate to different access terminal categories and/or different applications. In some aspects, different access terminal categories may relate to different performance requirements of different access terminals. In some aspects, the disclosed unified frame structure design could support, for example, and without limitation, at least one of: a low latency mode, a low overhead mode, a low power mode (e.g., for micro-sleep and/or dynamic bandwidth switching), an access terminal with narrowband capability operating in wideband, or ultra-low-latency and nominal multiplexing. Other aspects, embodiments, and features are also claimed and described.
Abstract:
The disclosure relates in some aspects to an energy-aware architecture that supports a low power scheduling mode. For example, a media access control (MAC) architecture for a base station (e.g., an enhanced Node B) and associated access terminals (e.g., UEs) can take the power needs of the access terminals into account when scheduling the access terminals. In some aspects, an access terminal may support a particular frame structure for a low power mode. Accordingly, scheduling of the access terminal may include use of the particular frame structure during low power mode.
Abstract:
The disclosure relates in some aspects to techniques for improved channel estimation. For example, a device can specify a pilot structure where pilot density differs over time. As another example, a device can indicate that a pilot from a prior transmission time interval (TTI) can be used for channel estimation. As another example, a device can employ frequency domain physical resource block (PRB) bundling with the bundling information signaling. As yet another example, a device can use an adjustable traffic-to-pilot ratio (TPR) for throughput optimization. Other aspects, embodiments, and features are also discussed and claimed.
Abstract:
Methods, systems, and devices are described for wireless communication at a UE. A base station may select a hybrid pilot configuration including a relatively sparse periodic pilot and a dense pilot embedded in one or more symbols of a low latency burst. A user equipment (UE) may generate a long term statistical average channel estimate based on the periodic pilot and an instantaneous channel estimate (e.g., for demodulation) based on the dense pilot embedded in the low latency burst. The UE may refine the instantaneous channel estimate by converting a control channel embedded with the burst. In some instances, the base station may embed the dense pilots in the first symbol of a burst and transmit subsequent low latency symbols with a reduced density pilot (or without pilot tones).
Abstract:
Methods, apparatus, and systems for wireless communication are provided. A method for wireless communication using a single radio air interface includes configuring a radio air interface of a first device to operate in accordance with a first variant of resource-spread multiple access technology, communicating wirelessly from a first device to a base station of a wide area network using the first variant of resource-spread multiple access technology, reconfiguring the radio air interface to operate in accordance with a second variant of resource-spread code division multiple access technology, and communicating wirelessly with a second device in a mesh network subsequent to reconfiguring the radio. The first device and the second device communicate wirelessly at power levels below a power level threshold selected to cause the base station to ignore transmissions between the first device and the second device.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, while in dual connectivity with a carrier of a second cell group, a first grant for a first communication on a carrier of a first cell group. The UE may determine an allocated power for the first cell group by a specified time offset before a start of second cell group transmissions. The UE may receive a second grant, after the first grant, for a second communication on the first cell group. The UE may transmit the first communication with a first transmit power. The UE may transmit the second communication with a second transmit power that is based on the allocated power and the first transmit power and/or a maximum transmit power for the first cell group. Numerous other aspects are described.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be configured to receive a plurality of combined signals. Each combined signal may be on a tone of a plurality of tones. The apparatus may be configured to determine a first pilot signal on a first tone of the plurality of tones. The apparatus may be configured to generate an interference-reduced signal for the first tone by canceling the determined first pilot signal from a first combined signal on the first tone.
Abstract:
A user equipment (UE) may spatial time-division multiplex a plurality of sounding reference signal (SRS) ports, each of the plurality of SRS ports being associated with at least one of a set of orthogonal weights, the set of orthogonal weights corresponding to phase shifting, and transmit a plurality of SRSs via the plurality of spatially time-division multiplexed SRS ports simultaneously, each of the plurality of SRSs including at least two SRS repetition. The plurality of SRSs may be configured to form or present a quasi-co-location (QCL) receive (Rx) beam subspace. The UE may configure the plurality of SRSs to form the subspace as the QCL Rx beam subspace, and a base station may signal the UE to a specific Rx beam subspace such that it is aligned to the base station's beamforming direction, and achieve spatial multiplexing gain in the QCL Rx beam subspace.