Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on a comparison between an offset at which CSF values are stable and an offset at which a CSF report is to be sent to a base station. If the CSF values are not stable by the time the CSF report is to be sent, a CSF report from a prior DRX cycle may be used. Alternatively, if the CSF value are stable by the time the CSF report is to be sent, a determination may be made to either generate a new CSF report or use a prior CSF report. The latter determination may be made based on various criteria, including channel conditions and DRX cycle length.
Abstract:
Enabling receive diversity based on detecting incorrect paging message length. A paging channel may be monitored. An indication of a paging message may be received on the paging channel. The paging message may include a message length field indicating a message length of the paging message. The message length field of the paging message may be received on the paging channel and decoded. It may be determined that the message length indicated in the message length field is incorrect. Receive diversity may be enabled for at least one subsequent paging occasion in response to determining that the message length indicated in the message length field is incorrect.
Abstract:
Methods and apparatus to reduce power consumption in user equipment (UE) that operates in a connected discontinuous reception (C-DRX) mode while in communication with wireless network are disclosed. A C-DRX warm-up period before the UE enters an on-duration is adjusted dynamically based on one or more factors including a time division duplex (TDD) uplink/downlink (UL/DL) subframe configuration, signal-to-noise ratio (SNR) values, and Doppler shift values. The C-DRX warm-up period is adapted based on the pattern of DL subframes in the UL/DL subframe configuration by including DL subframes that best contribute to channel estimation and adaptive tracking loops based on measured SNR and Doppler shift conditions. Favorable channel conditions, such as higher SNR and lower Doppler shift, can require fewer DL subframes and consequently shorter C-DRX warm-up periods. Higher Doppler shift values indicate more rapidly varying channel conditions and require DL subframes positioned closer to the start of the on-duration.
Abstract:
Performing measurement of a first RAT while connected to a second RAT. The UE may initially communicate with a base station of the second RAT. While maintaining a connection to the base station of the first RAT, the UE may perform base station measurement of the first RAT (e.g., using a single radio of the UE). However, the measurement of the first RAT may be influenced by various factors, such as signal quality metrics of the second RAT. For example, if signal quality metrics are high for the second RAT, measurement of the first RAT may not be desirable, e.g., for battery life reasons.
Abstract:
A method for performing a frequency scan in presence of an adjacent jammer signal is provided. The method can include a wireless communication device determining an occurrence of an acquisition (ACQ) failure on a candidate system in a frequency scan candidate list (FSCL) generated based on a first frequency scan; identifying the candidate system as a jammer signal in response to the ACQ failure; suppressing the jammer signal to derive a jammer suppressed signal; and performing a second frequency scan based at least in part on the jammer suppressed signal.
Abstract:
Manipulating modulation and coding scheme (MCS) allocation after a communication interruption. A UE device may resume communications with a BS after a communication interruption. Channel quality information may be generated and transmitted to the BS. The channel quality information may be based on channel quality measurements, and may also be based on an offset configured manipulate an MCS allocation by the BS based on determining that the interruption to communication between the UE and the BS has occurred.
Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on channel conditions, DRX cycle length, and/or the requirements of CSF reporting for current DRX cycle. The proposed approach can allow for more efficient power consumption related to CSF reports in DRX scenarios where new CSF reports have little or no impact to throughput.
Abstract:
A method for reducing power consumption in connected mode discontinuous reception is disclosed. The method can include a wireless communication device sending a transmission for a pending HARQ retransmission process and receiving an ACK for the transmission. The method can further include the wireless communication device determining a subset of remaining uplink transmission opportunities in the pending HARQ retransmission process to monitor for an uplink grant in response to receiving the ACK and monitoring the subset of remaining uplink transmission opportunities for an uplink grant. The method can additionally include the wireless communication device entering a sleep state for any uplink transmission opportunities remaining in the pending HARQ retransmission process after monitoring the subset of remaining uplink transmission opportunities in an instance in which an uplink grant for the pending HARQ retransmission process is not received for any of the subset of remaining uplink transmission opportunities.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
A method for performing a frequency scan in presence of an adjacent jammer signal is provided. The method can include a wireless communication device determining an occurrence of an acquisition (ACQ) failure on a candidate system in a frequency scan candidate list (FSCL) generated based on a first frequency scan; identifying the candidate system as a jammer signal in response to the ACQ failure; suppressing the jammer signal to derive a jammer suppressed signal; and performing a second frequency scan based at least in part on the jammer suppressed signal.