Abstract:
This disclosure relates to techniques for opportunistically depowering receiver chains of a wireless device. Based on control information, a device may determine whether the current number of active receiver chains can be reduced while maintaining a target achievable code rate for a period of data reception associated with the control information. Additionally, the device may generate and use a lookup table to determine whether to depower receiver chains, and which receiver chains to depower.
Abstract:
This disclosure relates to performing grouped MIMO communications in a cellular communication system. A cellular base station may select a precoding matrix for transmitting a downlink signal to a wireless device via a MIMO channel. The selected precoding matrix may have unequal weights for different MIMO subchannels. The downlink signal may be precoded using the selected precoding matrix. The precoded downlink signal may be transmitted to the wireless device via the MIMO channel. The wireless device may receive and decode the downlink signal.
Abstract:
A device and method performs a handover. The method includes establishing a connection to a cellular network. The method includes determining whether a WiFi network is available for connection. The method includes determining performance data of the WiFi network based upon network metrics. The method includes determining a quality of service (QoS) parameter associated with a currently executed application, the QoS parameter being indicative of whether a handover from the cellular network to the WiFi network is permitted. The method includes performing the handover from the cellular network to the WiFi network when the performance data of the WiFi network satisfies a set of predetermined criteria for the network metrics and the QoS parameter indicates the handover is permitted.
Abstract:
Described herein are systems and methods for prioritizing frequency selection of a user equipment (“UE”) having a transceiver configured to enable the UE to establish a connection with a network using at least two communication protocols. A method may comprise recording, at the UE, a camped frequency and a camped band with which the UE is communicating with the first network in the first protocol, disconnecting from the first network and connecting to the second network, and disconnecting from the second network and reconnecting to the first network, wherein the reconnecting to the first network includes determining whether one of the camped frequency or a different frequency within the camped band is available for reconnection to the first network, and reconnecting to the first network using the one of the camped frequency or the different frequency within the camped band.
Abstract:
This disclosure relates to techniques for enabling a cellular network to more efficiently announce special network capabilities to UE's in its coverage area. The special network capabilities may be specific to a first class of UE devices and/or may be outside of the relevant telecommunication standard used by the cellular network. The base station may transmit a dummy System Information Block-1 (SIB-1), wherein the dummy system information block is broadcast separately from regular system information block 1's (SIB-1's).
Abstract:
A method for reducing packet loss during data transfer from a network to a wireless communication device over a connection is disclosed. The method can include the wireless communication device signaling a first receive window size for a data transfer; determining occurrence of an event resulting in an interruption of the connection; and, in response to determining occurrence of the event, signaling a second receive window size for the data transfer prior to the event to trigger an adjustment of a data rate of the data transfer in preparation for the event.
Abstract:
A network reselection procedure, of a wireless communication device, that occurs following a network detachment event, such as a device sleep event or a device power savings mode event. The wireless communication device attempts to acquire a first wireless network to which the wireless communication device was most recently attached, immediately preceding the network detachment event. Then, in response to an unsuccessful acquisition of the first wireless network, the wireless communication device attempts an alternate network acquisition utilizing a Most Recently Used List (MRUL) that is stored at the wireless communication device and includes information about one or more frequency bands allocated to a primary service provider with which the wireless communication device is affiliated. After determining whether the alternate network acquisition attempt was successful, the wireless communication device attaches to a second network and stores information associated with the second network.
Abstract:
Estimating loading and potential available throughput a serving cell of a wireless user equipment (UE) device. Physical layer metrics of a channel on which the UE communicates with the serving cell may be measured. Cell utilization of the serving cell may be calculated based at least in part on the measured physical layer metrics. A maximum available throughput of the serving cell may be calculated based on the cell utilization.
Abstract:
A user equipment (UE) configured to connect to a network and operate in a carrier aggregation mode and a single carrier mode performs methods to select optimal component carriers. The methods include determining that a primary component carrier is operating less optimally than a secondary component carrier, sending an indication to the network that the primary component carrier is operating less optimally than the secondary component carrier, acquiring the secondary component carrier as a target primary component carrier and operating with the secondary component carrier as the target primary carrier component. In one exemplary embodiment, the indication is declaring a radio link failure (“RLF”) between the UE and the network. In another exemplary embodiment, the indication is a measurement report send to the network that triggers a handover procedure for the UE.
Abstract:
Embodiments described herein relate to an apparatus, system, and method for providing aperiodic uplink grants to a UE for aperiodic communications from the UE to a base station. In some embodiments, the UE may be configured to communicate information to the base station, which may be useable by the base station to determine an uplink grant schedule for subsequent communications between the base station and the UE. This uplink grant schedule may be aperiodic, i.e., the uplink grants may be issued at non-uniform intervals of time. The UE may receive the uplink grants from the base station according to the uplink grant schedule. The UE may transmit uplink communications to the base station in response to the received uplink grants.