Abstract:
Embodiments described herein relate to managing access to 5G cellular baseband resources for 5G-capable wireless devices. A wireless device can monitor application workloads by analyzing communication network performance requirements for a given application in-use or launching for future use along with system-level indications of overall device usage, battery level, and mobility status to determine whether access to 5G cellular baseband resources is recommended for an application. A 5G cellular baseband resource recommendation is provided for an application indicating a level of bandwidth in current use or expected for future use as well as a confidence metric in the bandwidth level indication. The 5G cellular baseband resource recommendation is used with additional device criteria to determine whether access to one or more 5G radio frequency bands is allowed.
Abstract:
A user equipment (UE) passively determines the presence of a cellular network bottleneck in a downlink channel and may take appropriate actions to mitigate the bottleneck. The UE may analyze the transport block size (TBS) of slots of received downlink traffic and assign states the to various slots based on this analysis. Based on these assigned states, the UE may identify a burst of network traffic from network traffic received from the cellular network, and the UE may also determine the burst duration as well as a busy estimation. The UE may determine that the cellular network is experiencing a bottleneck based at least in part on the burst duration and the busy estimation.
Abstract:
This disclosure relates to techniques for estimating baseband power consumption and using the baseband power consumption estimation to select baseband operation features. According to some embodiments, one or more baseband power consumption modifiers occurring during an estimation window may be identified. Baseband power consumption of the wireless device during the estimation window may be estimated based on the identified baseband power consumption modifiers occurring during the estimation window. Baseband data throughput of the wireless device during the estimation window may also be estimated. One or more baseband operation characteristics may be selected based at least in part on the estimated baseband power consumption during the estimation window, possibly in conjunction with the estimated baseband data throughput during the estimation window, current wireless medium conditions, and/or other considerations.
Abstract:
This disclosure relates to techniques for estimating baseband power consumption and using the baseband power consumption estimation to select baseband operation features. According to some embodiments, one or more baseband power consumption modifiers occurring during an estimation window may be identified. Baseband power consumption of the wireless device during the estimation window may be estimated based on the identified baseband power consumption modifiers occurring during the estimation window. Baseband data throughput of the wireless device during the estimation window may also be estimated. One or more baseband operation characteristics may be selected based at least in part on the estimated baseband power consumption during the estimation window, possibly in conjunction with the estimated baseband data throughput during the estimation window, current wireless medium conditions, and/or other considerations.
Abstract:
Location-based subscriber identity update in a wireless user equipment (UE) device. A location of the UE may be determined. An indication of a plurality of network connectivity options may be provided via a user interface. The plurality of network connectivity options may be provided based on the location of the UE. User input selecting a network connectivity option may be received via the user interface. The UE may be configured according to the selected network connectivity option in response to the user input.
Abstract:
A method and system are described for use in a portable electronic device that includes a wireless local area network (WLAN) subsystem, a cellular packet data subsystem for communicating packet data, a cellular voice subsystem for communicating cellular voice information, and a processing subsystem. In the described embodiments, the WLAN subsystem establishes a connection to a WLAN and the WLAN subsystem then determines the signal strength of the connection to the WLAN. Then, on condition that the signal strength exceeds a threshold, the processing subsystem selects the WLAN subsystem for the communication of packet data to and from the portable electronic device, and puts the cellular packet data subsystem into a reduced power state that reduces the power consumption of the cellular packet data subsystem. Packet data is then communicated to and from the portable electronic device using the WLAN subsystem while the cellular data subsystem is in the reduced power state.
Abstract:
This disclosure relates to techniques for a wireless device to determine whether to display an indicator of millimeter wave cellular availability. A wireless device may establish a radio resource control connection that includes connectivity with a fifth generation new radio millimeter wave cell. The wireless device may determine to display an indication of millimeter wave cell availability. The wireless device may determine location status information and motion status information for the wireless device. The wireless device may determine when to cease displaying the indication of millimeter wave cell availability after the radio resource control connection is released or the millimeter wave cell is deconfigured based at least in part on the location status information for the wireless device and the motion status information for the wireless device.
Abstract:
This disclosure relates to techniques for providing a framework for supporting custom signaling between a wireless device and a cellular network. A wireless device and a cellular base station may establish a wireless link. The wireless device and the cellular base station may perform custom signaling in accordance with the custom signaling framework.
Abstract:
This disclosure relates to techniques for providing a framework for supporting custom signaling between a wireless device and a cellular network. A wireless device and a cellular base station may establish a wireless link. The wireless device and the cellular base station may perform custom signaling in accordance with the custom signaling framework.
Abstract:
Apparatuses, systems, and methods for high data mode operation in cellular networks. A UE may determine, for an interface to a high-speed cellular network, a categorization from a plurality of categorizations, determine availability of the high-speed cellular network, and select, based at least in part on the categorization and availability of the high-speed cellular network, the interface for a data connection to the high-speed cellular network. The categorization may be one of expensive or not expensive and/or one of a first level associated with a higher compression codec rate or a second level associated with a lower compression codec rate. The UE may receive, from one of the a low-speed cellular network or the high-speed cellular network, carrier plan information for a cellular data service carrier and analyze the carrier plan information to determine desirability of a switch, e.g., from the low-speed cellular network to the high-speed cellular network.