Abstract:
The disclosure relates in some aspects to techniques for use in systems where a plurality of devices with different priority levels share a common set of resources for communication (e.g., downlink transmissions). Certain aspects provide a new indication channel and a procedure to signal scheduling information (e.g., priority information). Such information may serve as an indicator for possible new grants. Such information may additionally serve as an indicator for higher-priority scheduling conflicts or include explicit commands that result from conflicts (e.g., conflicts relating to puncturing of resources allocated for transmissions to lower priority devices).
Abstract:
Aspects of the present disclosure provide a self-contained subframe structure for time division duplex (TDD) carriers. Information transmitted on a TDD carrier may be grouped into subframes, and each subframe can provide communications in both directions (e.g., uplink and downlink) to enable such communications without needing further information in another subframe. In one aspect of the disclosure, a single subframe may include scheduling information, data transmission corresponding to the scheduling information, and acknowledgment packets corresponding to the data transmission. Furthermore, the subframe may additionally include a header and/or a trailer to provide certain bi-directional communications functions.
Abstract:
Various aspects of the present disclosure provide for enabling at least one opportunity to transmit mission critical (MiCr) data and at least one opportunity to receive MiCr data in a time division duplex (TDD) subframe during a single transmission time interval (TTI). The single TTI may be no greater than 500 microseconds. The TDD subframe may be a downlink (DL)-centric TDD subframe or an uplink (UL)-centric TDD subframe. How much of the TDD subframe is configured for the at least one opportunity to transmit the MiCr data and how much of the TDD subframe is configured for the at least one opportunity to receive the MiCr data may be adjusted based on one or more characteristics of the MiCr data. The MiCr data may have a low latency requirement, a high priority requirement, and/or a high reliability requirement. Various other aspects are provided throughout the present disclosure.
Abstract:
Systems, devices, and methods associated with interference aware sounding reference signals are provided. A method for wireless communication includes receiving, at a wireless communication device in communication with a first base station, an interfering signal from a second base station (or other base stations); determining, at the wireless communication device, a spatial direction of the interfering signal; and transmitting, with the wireless communication device, a signal to the first base station based on the spatial direction of the interfering signal. Another method of wireless communication includes receiving, at a first base station, a signal from a wireless communication device, the signal based on a spatial direction of an interfering signal received by the wireless communication device from a second base station (or other base stations); transmitting, with the first base station, a downlink communication to the wireless communication device, the downlink communication beamformed in the spatial direction based on the signal received from the wireless communication device.
Abstract:
Bursty interference or puncturing may be identified, either by a user equipment (UE) or by a base station. In response, a protection scheme may be applied to protect communications from the bursty interference or puncturing. The protection scheme may include using both time and frequency interleaving of code blocks in the communications. The protection scheme may also include modifying the modulation and coding scheme (MCS), coding rate, precoding matrix index (PMI), or rank indicator (RI) used in the communications. The protection scheme may also include using a universal low-density parity check (LDPC) code in the transmission of the communications.
Abstract:
Methods, apparatus, and computer software are disclosed for communicating within a wireless communication network including a scheduling entity configured for full duplex communication, and user equipment (UE) configured for half duplex communication. In some examples, one or more UEs may be configured for limited (quasi-) full duplex communication. Some aspects relate to scheduling the UEs, including determining whether co-scheduling of the UEs to share a time-frequency resource is suitable based on one or more factors such as an inter-device path loss.
Abstract:
A wireless network may provide system information by either a fixed periodic broadcast or broad-beam transmission or in response to a request by a user equipment (UE). The wireless network may broadcast (or broad-beam transmit) a signal that indicates to the UEs within a cell or zone coverage area that system information is to be transmitted on a fixed periodic schedule or in response to a request sent by one or more UEs.
Abstract:
Techniques for determining power relaxation values are disclosed. The power relaxation values may be determined according to an ending resource block (RB) and a number of RBs in a contiguous allocation. In one aspect, the power relaxation values are arranged into regions based, at least in part, on transmission channel bandwidths and the distance from a protected adjacent channel. A user equipment (UE) can determine a power relaxation value for its current allocation using the ending RB index and contiguous RB length and can adjust its transmission power accordingly. Evolved NodeBs may estimate the power relaxation that a particular UE has selected in order to more accurately determine the transmit power available to the UE. Using the more accurate estimate of transmit power, the eNB may schedule the UE for uplink transmissions accordingly.
Abstract:
Methods and apparatuses are provided that include mitigating interference for devices communicating with femto nodes or other low power base stations by assigning protected resources for communicating therewith. The protected resources can be negotiated with a macrocell base station using interference cancellation. The protected resources can be assigned based on an early or late handover event, which can indicate that the device may be susceptible to interference from the macrocell base station.
Abstract:
Some aspects of the present disclosure provide for methods, apparatus, and computer software for low-power synchronization of wireless communication devices. In one example, an asynchronous code division multiple access (CDMA) channel may be utilized for uplink communication. By utilizing asynchronous CDMA on the uplink, synchronization requirements are relaxed relative to other forms of communication. Accordingly, a synchronization period after coming out of a sleep state can be short, reducing power consumption during re-synchronization. In another example, a low-power companion receiver, rather than the full-power WWAN receiver, may be utilized to acquire a sync signal while the device is in its sleep state. Once synchronism is achieved via the low-power companion receiver, the full-power radio may power up and perform communication with the network. By shifting the synchronization from the full-power radio to the low-power companion radio, power consumption during re-synchronization can be achieved.